結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | drken1215 |
提出日時 | 2018-06-26 00:13:25 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 284 ms / 7,000 ms |
コード長 | 2,568 bytes |
コンパイル時間 | 603 ms |
コンパイル使用メモリ | 73,728 KB |
実行使用メモリ | 19,456 KB |
最終ジャッジ日時 | 2024-06-30 22:43:50 |
合計ジャッジ時間 | 6,262 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 94 ms
17,920 KB |
testcase_01 | AC | 95 ms
17,920 KB |
testcase_02 | AC | 95 ms
17,920 KB |
testcase_03 | AC | 95 ms
17,920 KB |
testcase_04 | AC | 95 ms
17,920 KB |
testcase_05 | AC | 96 ms
17,920 KB |
testcase_06 | AC | 96 ms
17,920 KB |
testcase_07 | AC | 96 ms
18,048 KB |
testcase_08 | AC | 96 ms
18,048 KB |
testcase_09 | AC | 96 ms
18,048 KB |
testcase_10 | AC | 96 ms
18,048 KB |
testcase_11 | AC | 95 ms
17,920 KB |
testcase_12 | AC | 101 ms
18,048 KB |
testcase_13 | AC | 100 ms
17,792 KB |
testcase_14 | AC | 100 ms
17,920 KB |
testcase_15 | AC | 99 ms
17,920 KB |
testcase_16 | AC | 99 ms
17,920 KB |
testcase_17 | AC | 151 ms
19,456 KB |
testcase_18 | AC | 123 ms
19,456 KB |
testcase_19 | AC | 146 ms
19,456 KB |
testcase_20 | AC | 124 ms
18,688 KB |
testcase_21 | AC | 132 ms
19,200 KB |
testcase_22 | AC | 133 ms
19,072 KB |
testcase_23 | AC | 150 ms
19,456 KB |
testcase_24 | AC | 284 ms
19,456 KB |
testcase_25 | AC | 276 ms
19,456 KB |
testcase_26 | AC | 256 ms
19,456 KB |
testcase_27 | AC | 210 ms
18,560 KB |
testcase_28 | AC | 263 ms
19,200 KB |
testcase_29 | AC | 261 ms
19,072 KB |
testcase_30 | AC | 258 ms
18,688 KB |
ソースコード
#include <iostream> #include <vector> #include <cmath> using namespace std; struct ComplexNumber { double real, imag; inline ComplexNumber& operator=(const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;} friend inline ostream& operator<<(ostream &s, const ComplexNumber &c) {return s<<'<'<<c.real<<','<<c.imag<<'>';} }; inline ComplexNumber make_comp(double a, double b) { return {a, b}; } inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) { return {x.real + y.real, x.imag + y.imag}; } inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) { return {x.real - y.real, x.imag - y.imag}; } inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) { return {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real}; } inline ComplexNumber operator * (const ComplexNumber &x, double a) { return {x.real * a, x.imag * a}; } inline ComplexNumber operator / (const ComplexNumber &x, double a) { return {x.real / a, x.imag / a}; } const int MAX = 1<<18; // must be 2^n long long A[MAX], B[MAX], C[MAX]; ComplexNumber AT[MAX], BT[MAX], CT[MAX]; void FFT(ComplexNumber F[], bool inv) { int N = MAX; for (int t = N; t >= 2; t >>= 1) { double ang = acos(-1.0)*2/t; for (int i = 0; i < t/2; i++) { ComplexNumber w = {cos(ang*i), sin(ang*i)}; if (inv) w.imag = -w.imag; for (int j = i; j < N; j += t) { ComplexNumber f1 = F[j] + F[j+t/2]; ComplexNumber f2 = (F[j] - F[j+t/2]) * w; F[j] = f1; F[j+t/2] = f2; } } } for (int i = 1, j = 0; i < N; i++) { for (int k = N >> 1; k > (j ^= k); k >>= 1); if (i < j) swap(F[i], F[j]); } } void mult() { for (int i = 0; i < MAX; ++i) AT[i] = make_comp((double)A[i], 0.0); for (int i = 0; i < MAX; ++i) BT[i] = make_comp((double)B[i], 0.0); FFT(AT, false); FFT(BT, false); for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i]; FFT(CT, true); for (int i = 0; i < MAX; ++i) { CT[i] = CT[i] / MAX; C[i] = (long long)(CT[i].real + 0.5); } } int main() { int L, M, N, Q; cin >> L >> M >> N; for (int i = 0; i < L; ++i) { int a; cin >> a; A[a-1] = 1; } for (int i = 0; i < M; ++i) { int b; cin >> b; B[N-b] = 1; } mult(); cin >> Q; for (int i = 0; i < Q; ++i) { cout << C[N-1+i] << endl; } }