結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | drken1215 |
提出日時 | 2018-06-26 02:10:27 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 277 ms / 7,000 ms |
コード長 | 2,771 bytes |
コンパイル時間 | 742 ms |
コンパイル使用メモリ | 76,612 KB |
実行使用メモリ | 22,060 KB |
最終ジャッジ日時 | 2024-06-30 22:50:25 |
合計ジャッジ時間 | 6,555 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 92 ms
20,172 KB |
testcase_01 | AC | 93 ms
19,924 KB |
testcase_02 | AC | 92 ms
20,044 KB |
testcase_03 | AC | 93 ms
19,920 KB |
testcase_04 | AC | 96 ms
20,040 KB |
testcase_05 | AC | 93 ms
20,044 KB |
testcase_06 | AC | 93 ms
20,068 KB |
testcase_07 | AC | 90 ms
19,816 KB |
testcase_08 | AC | 96 ms
20,064 KB |
testcase_09 | AC | 93 ms
19,948 KB |
testcase_10 | AC | 92 ms
20,052 KB |
testcase_11 | AC | 90 ms
20,044 KB |
testcase_12 | AC | 99 ms
20,068 KB |
testcase_13 | AC | 96 ms
20,064 KB |
testcase_14 | AC | 96 ms
20,188 KB |
testcase_15 | AC | 94 ms
20,052 KB |
testcase_16 | AC | 96 ms
19,948 KB |
testcase_17 | AC | 148 ms
20,700 KB |
testcase_18 | AC | 120 ms
20,824 KB |
testcase_19 | AC | 148 ms
20,704 KB |
testcase_20 | AC | 122 ms
20,832 KB |
testcase_21 | AC | 131 ms
20,824 KB |
testcase_22 | AC | 129 ms
20,564 KB |
testcase_23 | AC | 148 ms
20,832 KB |
testcase_24 | AC | 277 ms
20,952 KB |
testcase_25 | AC | 274 ms
21,984 KB |
testcase_26 | AC | 251 ms
22,060 KB |
testcase_27 | AC | 210 ms
21,668 KB |
testcase_28 | AC | 261 ms
20,476 KB |
testcase_29 | AC | 259 ms
20,804 KB |
testcase_30 | AC | 244 ms
20,568 KB |
ソースコード
#include <iostream> #include <vector> #include <cmath> using namespace std; struct ComplexNumber { double real, imag; inline ComplexNumber& operator = (const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;} friend inline ostream& operator << (ostream &s, const ComplexNumber &c) {return s<<'<'<<c.real<<','<<c.imag<<'>';} }; inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) { return {x.real + y.real, x.imag + y.imag}; } inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) { return {x.real - y.real, x.imag - y.imag}; } inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) { return {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real}; } inline ComplexNumber operator * (const ComplexNumber &x, double a) { return {x.real * a, x.imag * a}; } inline ComplexNumber operator / (const ComplexNumber &x, double a) { return {x.real / a, x.imag / a}; } struct FFT { static const int MAX = 1<<18; // must be 2^n ComplexNumber AT[MAX], BT[MAX], CT[MAX]; void DTM(ComplexNumber F[], bool inv) { int N = MAX; for (int t = N; t >= 2; t >>= 1) { double ang = acos(-1.0)*2/t; for (int i = 0; i < t/2; i++) { ComplexNumber w = {cos(ang*i), sin(ang*i)}; if (inv) w.imag = -w.imag; for (int j = i; j < N; j += t) { ComplexNumber f1 = F[j] + F[j+t/2]; ComplexNumber f2 = (F[j] - F[j+t/2]) * w; F[j] = f1; F[j+t/2] = f2; } } } for (int i = 1, j = 0; i < N; i++) { for (int k = N >> 1; k > (j ^= k); k >>= 1); if (i < j) swap(F[i], F[j]); } } // C is A*B void mult(long long A[], long long B[], long long C[]) { for (int i = 0; i < MAX; ++i) AT[i] = {(double)A[i], 0.0}; for (int i = 0; i < MAX; ++i) BT[i] = {(double)B[i], 0.0}; DTM(AT, false); DTM(BT, false); for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i]; DTM(CT, true); for (int i = 0; i < MAX; ++i) { CT[i] = CT[i] / MAX; C[i] = (long long)(CT[i].real + 0.5); } } }; int main() { int L, M, N, Q; cin >> L >> M >> N; long long A[FFT::MAX], B[FFT::MAX], C[FFT::MAX]; for (int i = 0; i < L; ++i) { int a; cin >> a; A[a-1] = 1; } for (int i = 0; i < M; ++i) { int b; cin >> b; B[N-b] = 1; } FFT f; f.mult(A, B, C); cin >> Q; for (int i = 0; i < Q; ++i) { cout << C[N-1+i] << endl; } }