結果
| 問題 | 
                            No.206 数の積集合を求めるクエリ
                             | 
                    
| コンテスト | |
| ユーザー | 
                             drken1215
                         | 
                    
| 提出日時 | 2018-06-26 02:10:27 | 
| 言語 | C++14  (gcc 13.3.0 + boost 1.87.0)  | 
                    
| 結果 | 
                             
                                AC
                                 
                             
                            
                         | 
                    
| 実行時間 | 277 ms / 7,000 ms | 
| コード長 | 2,771 bytes | 
| コンパイル時間 | 742 ms | 
| コンパイル使用メモリ | 76,612 KB | 
| 実行使用メモリ | 22,060 KB | 
| 最終ジャッジ日時 | 2024-06-30 22:50:25 | 
| 合計ジャッジ時間 | 6,555 ms | 
| 
                            ジャッジサーバーID (参考情報)  | 
                        judge1 / judge5 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 28 | 
ソースコード
#include <iostream>
#include <vector>
#include <cmath>
using namespace std;
struct ComplexNumber {
    double real, imag;
    inline ComplexNumber& operator = (const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;}
    friend inline ostream& operator << (ostream &s, const ComplexNumber &c) {return s<<'<'<<c.real<<','<<c.imag<<'>';}
};
inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real + y.real, x.imag + y.imag};
}
inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real - y.real, x.imag - y.imag};
}
inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real};
}
inline ComplexNumber operator * (const ComplexNumber &x, double a) {
    return {x.real * a, x.imag * a};
}
inline ComplexNumber operator / (const ComplexNumber &x, double a) {
    return {x.real / a, x.imag / a};
}
struct FFT {
    static const int MAX = 1<<18;               // must be 2^n
    ComplexNumber AT[MAX], BT[MAX], CT[MAX];
    void DTM(ComplexNumber F[], bool inv) {
        int N = MAX;
        for (int t = N; t >= 2; t >>= 1) {
            double ang = acos(-1.0)*2/t;
            for (int i = 0; i < t/2; i++) {
                ComplexNumber w = {cos(ang*i), sin(ang*i)};
                if (inv) w.imag = -w.imag;
                for (int j = i; j < N; j += t) {
                    ComplexNumber f1 = F[j] + F[j+t/2];
                    ComplexNumber f2 = (F[j] - F[j+t/2]) * w;
                    F[j] = f1;
                    F[j+t/2] = f2;
                }
            }
        }
        for (int i = 1, j = 0; i < N; i++) {
            for (int k = N >> 1; k > (j ^= k); k >>= 1);
            if (i < j) swap(F[i], F[j]);
        }
    }
    
    // C is A*B
    void mult(long long A[], long long B[], long long C[]) {
        for (int i = 0; i < MAX; ++i) AT[i] = {(double)A[i], 0.0};
        for (int i = 0; i < MAX; ++i) BT[i] = {(double)B[i], 0.0};
        
        DTM(AT, false);
        DTM(BT, false);
        
        for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i];
        
        DTM(CT, true);
        
        for (int i = 0; i < MAX; ++i) {
            CT[i] = CT[i] / MAX;
            C[i] = (long long)(CT[i].real + 0.5);
        }
    }
};
int main() {
    int L, M, N, Q;
    cin >> L >> M >> N;
    long long A[FFT::MAX], B[FFT::MAX], C[FFT::MAX];
    for (int i = 0; i < L; ++i) {
        int a; cin >> a; A[a-1] = 1;
    }
    for (int i = 0; i < M; ++i) {
        int b; cin >> b; B[N-b] = 1;
    }
    FFT f;
    f.mult(A, B, C);
    
    cin >> Q;
    for (int i = 0; i < Q; ++i) {
        cout << C[N-1+i] << endl;
    }
}
            
            
            
        
            
drken1215