結果

問題 No.206 数の積集合を求めるクエリ
ユーザー drken1215drken1215
提出日時 2018-06-26 02:10:27
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
AC  
実行時間 277 ms / 7,000 ms
コード長 2,771 bytes
コンパイル時間 742 ms
コンパイル使用メモリ 76,612 KB
実行使用メモリ 22,060 KB
最終ジャッジ日時 2024-06-30 22:50:25
合計ジャッジ時間 6,555 ms
ジャッジサーバーID
(参考情報)
judge1 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 92 ms
20,172 KB
testcase_01 AC 93 ms
19,924 KB
testcase_02 AC 92 ms
20,044 KB
testcase_03 AC 93 ms
19,920 KB
testcase_04 AC 96 ms
20,040 KB
testcase_05 AC 93 ms
20,044 KB
testcase_06 AC 93 ms
20,068 KB
testcase_07 AC 90 ms
19,816 KB
testcase_08 AC 96 ms
20,064 KB
testcase_09 AC 93 ms
19,948 KB
testcase_10 AC 92 ms
20,052 KB
testcase_11 AC 90 ms
20,044 KB
testcase_12 AC 99 ms
20,068 KB
testcase_13 AC 96 ms
20,064 KB
testcase_14 AC 96 ms
20,188 KB
testcase_15 AC 94 ms
20,052 KB
testcase_16 AC 96 ms
19,948 KB
testcase_17 AC 148 ms
20,700 KB
testcase_18 AC 120 ms
20,824 KB
testcase_19 AC 148 ms
20,704 KB
testcase_20 AC 122 ms
20,832 KB
testcase_21 AC 131 ms
20,824 KB
testcase_22 AC 129 ms
20,564 KB
testcase_23 AC 148 ms
20,832 KB
testcase_24 AC 277 ms
20,952 KB
testcase_25 AC 274 ms
21,984 KB
testcase_26 AC 251 ms
22,060 KB
testcase_27 AC 210 ms
21,668 KB
testcase_28 AC 261 ms
20,476 KB
testcase_29 AC 259 ms
20,804 KB
testcase_30 AC 244 ms
20,568 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <iostream>
#include <vector>
#include <cmath>
using namespace std;

struct ComplexNumber {
    double real, imag;
    inline ComplexNumber& operator = (const ComplexNumber &c) {real = c.real; imag = c.imag; return *this;}
    friend inline ostream& operator << (ostream &s, const ComplexNumber &c) {return s<<'<'<<c.real<<','<<c.imag<<'>';}
};
inline ComplexNumber operator + (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real + y.real, x.imag + y.imag};
}
inline ComplexNumber operator - (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real - y.real, x.imag - y.imag};
}
inline ComplexNumber operator * (const ComplexNumber &x, const ComplexNumber &y) {
    return {x.real * y.real - x.imag * y.imag, x.real * y.imag + x.imag * y.real};
}
inline ComplexNumber operator * (const ComplexNumber &x, double a) {
    return {x.real * a, x.imag * a};
}
inline ComplexNumber operator / (const ComplexNumber &x, double a) {
    return {x.real / a, x.imag / a};
}

struct FFT {
    static const int MAX = 1<<18;               // must be 2^n
    ComplexNumber AT[MAX], BT[MAX], CT[MAX];

    void DTM(ComplexNumber F[], bool inv) {
        int N = MAX;
        for (int t = N; t >= 2; t >>= 1) {
            double ang = acos(-1.0)*2/t;
            for (int i = 0; i < t/2; i++) {
                ComplexNumber w = {cos(ang*i), sin(ang*i)};
                if (inv) w.imag = -w.imag;
                for (int j = i; j < N; j += t) {
                    ComplexNumber f1 = F[j] + F[j+t/2];
                    ComplexNumber f2 = (F[j] - F[j+t/2]) * w;
                    F[j] = f1;
                    F[j+t/2] = f2;
                }
            }
        }
        for (int i = 1, j = 0; i < N; i++) {
            for (int k = N >> 1; k > (j ^= k); k >>= 1);
            if (i < j) swap(F[i], F[j]);
        }
    }
    
    // C is A*B
    void mult(long long A[], long long B[], long long C[]) {
        for (int i = 0; i < MAX; ++i) AT[i] = {(double)A[i], 0.0};
        for (int i = 0; i < MAX; ++i) BT[i] = {(double)B[i], 0.0};
        
        DTM(AT, false);
        DTM(BT, false);
        
        for (int i = 0; i < MAX; ++i) CT[i] = AT[i] * BT[i];
        
        DTM(CT, true);
        
        for (int i = 0; i < MAX; ++i) {
            CT[i] = CT[i] / MAX;
            C[i] = (long long)(CT[i].real + 0.5);
        }
    }
};

int main() {
    int L, M, N, Q;
    cin >> L >> M >> N;
    long long A[FFT::MAX], B[FFT::MAX], C[FFT::MAX];
    for (int i = 0; i < L; ++i) {
        int a; cin >> a; A[a-1] = 1;
    }
    for (int i = 0; i < M; ++i) {
        int b; cin >> b; B[N-b] = 1;
    }
    FFT f;
    f.mult(A, B, C);
    
    cin >> Q;
    for (int i = 0; i < Q; ++i) {
        cout << C[N-1+i] << endl;
    }
}
0