結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | Ryuhei Mori |
提出日時 | 2018-07-23 09:02:34 |
言語 | C (gcc 12.3.0) |
結果 |
AC
|
実行時間 | 15 ms / 7,000 ms |
コード長 | 4,875 bytes |
コンパイル時間 | 351 ms |
コンパイル使用メモリ | 38,336 KB |
実行使用メモリ | 6,528 KB |
最終ジャッジ日時 | 2024-06-07 20:28:17 |
合計ジャッジ時間 | 1,903 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 8 ms
5,248 KB |
testcase_01 | AC | 7 ms
5,376 KB |
testcase_02 | AC | 8 ms
5,376 KB |
testcase_03 | AC | 7 ms
5,376 KB |
testcase_04 | AC | 8 ms
5,376 KB |
testcase_05 | AC | 7 ms
5,376 KB |
testcase_06 | AC | 7 ms
5,376 KB |
testcase_07 | AC | 7 ms
5,376 KB |
testcase_08 | AC | 7 ms
5,376 KB |
testcase_09 | AC | 7 ms
5,376 KB |
testcase_10 | AC | 8 ms
5,376 KB |
testcase_11 | AC | 10 ms
5,376 KB |
testcase_12 | AC | 8 ms
5,376 KB |
testcase_13 | AC | 7 ms
5,376 KB |
testcase_14 | AC | 9 ms
5,376 KB |
testcase_15 | AC | 7 ms
5,376 KB |
testcase_16 | AC | 7 ms
5,376 KB |
testcase_17 | AC | 12 ms
5,760 KB |
testcase_18 | AC | 10 ms
5,376 KB |
testcase_19 | AC | 11 ms
5,760 KB |
testcase_20 | AC | 9 ms
5,376 KB |
testcase_21 | AC | 10 ms
5,504 KB |
testcase_22 | AC | 11 ms
5,376 KB |
testcase_23 | AC | 12 ms
5,760 KB |
testcase_24 | AC | 15 ms
6,528 KB |
testcase_25 | AC | 15 ms
6,272 KB |
testcase_26 | AC | 12 ms
5,760 KB |
testcase_27 | AC | 11 ms
5,504 KB |
testcase_28 | AC | 13 ms
5,888 KB |
testcase_29 | AC | 13 ms
5,888 KB |
testcase_30 | AC | 11 ms
5,760 KB |
ソースコード
#pragma GCC target ("avx") #include <unistd.h> #include <complex.h> #define PI2 6.28318530717958647692528676655900577L char ibuf[1200100]; char *ibufe = ibuf-1; void readall(){ int k, t = 0; while((k=read(STDIN_FILENO, ibuf+t, sizeof(ibuf)-t))>0) t += k; } int read_uint(){ int x=0; while(*(++ibufe) <'0'); do { x *= 10; x += *ibufe-'0'; } while(*(++ibufe) >='0'); return x; } char buf[700000]; char *bufe = buf; void write_uintln(int x){ int i; static char tmp[13]; if(x==0){ *bufe++ = '0'; *bufe++ = '\n'; return; } for(i=0; x; i++){ tmp[i] = '0' + x % 10; x /= 10; } for(i--; i >= 0; i--){ *bufe++ = tmp[i]; } *bufe++ = '\n'; } void writeall(){ int k, t = 0; while((k=write(STDOUT_FILENO, buf+t, bufe-buf-t))>0) t += k; } const int k = 17; const int m = (1 << 17); typedef double complex cmplx; cmplx C[1<<17]; cmplx w[1<<16]; long double complex v[16]; void fft(int k, cmplx *A, const cmplx *w) __attribute__((optimize("fast-math"))); void fft(int k, cmplx *A, const cmplx *w){ const int m = 1 << k; int u = 1; int v = m/4; int i, j; if(k&1){ for(j=0; j<m/2; j++){ cmplx Ajv = A[j+(m/2)]; A[j+(m/2)] = A[j] - Ajv; A[j] += Ajv; } u <<= 1; v >>= 1; } for(i=k&~1;i>0;i-=2){ int jh; for(jh=0;jh<u;jh++){ cmplx wj = w[jh<<1]; cmplx wj2 = w[jh]; cmplx wj3 = wj2 * wj; // cmplx wj3 = creal(wj) * (2 * creal(wj2) - 1) + (2 * creal(wj) * cimag(wj2) - cimag(wj)) * I; int je; for(j = jh << i, je = j+v;j<je; j++){ cmplx tmp0 = A[j]; cmplx tmp1 = wj * A[j+v]; cmplx tmp2 = wj2 * A[j+2*v]; cmplx tmp3 = wj3 * A[j+3*v]; cmplx ttmp0 = tmp0 + tmp2; cmplx ttmp2 = tmp0 - tmp2; cmplx ttmp1 = tmp1 + tmp3; cmplx ttmp3 = -I * (tmp1 - tmp3); A[j] = ttmp0 + ttmp1; A[j+v] = ttmp0 - ttmp1; A[j+2*v] = ttmp2 + ttmp3; A[j+3*v] = ttmp2 - ttmp3; } } u <<= 2; v >>= 2; } } void ifft(int k, cmplx *A, const cmplx *w) __attribute__((optimize("fast-math"))); void ifft(int k, cmplx *A, const cmplx *w){ const int m = 1 << k; int u = m/4; int v = 1; int i, j; for(i=2;i<=k;i+=2){ int jh; for(jh=0;jh<u;jh++){ cmplx wj = conj(w[jh<<1]); cmplx wj2 = conj(w[jh]); cmplx wj3 = wj2 * wj; // cmplx wj3 = creal(wj) * (2 * creal(wj2) - 1) + (2 * creal(wj) * cimag(wj2) - cimag(wj)) * I; int je; for(j = jh << i, je = j+v;j<je; j++){ cmplx tmp0 = A[j]; cmplx tmp1 = A[j+v]; cmplx tmp2 = A[j+2*v]; cmplx tmp3 = A[j+3*v]; cmplx ttmp0 = tmp0 + tmp1; cmplx ttmp1 = tmp0 - tmp1; cmplx ttmp2 = tmp2 + tmp3; cmplx ttmp3 = I * (tmp2 - tmp3); A[j] = ttmp0 + ttmp2; A[j+v] = wj * (ttmp1 + ttmp3); A[j+2*v] = wj2 * (ttmp0 - ttmp2); A[j+3*v] = wj3 * (ttmp1 - ttmp3); } } u >>= 2; v <<= 2; } if(k&1){ for(j = 0;j<m/2; j++){ cmplx Ajv = A[j+(m/2)]; A[j+(m/2)] = A[j] - Ajv; A[j] += Ajv; } } } void genw(int i, int b, long double complex z){ if(b == -1){ w[i] = z; } else { genw(i, b-1, z); genw(i|(1<<b), b-1, z*v[b]); } } void convolver(int k, cmplx *A, const cmplx *w) __attribute__((optimize("fast-math"))); void convolver(int k, cmplx *A, const cmplx *w){ int i, y; const int m = 1 << k; fft(k, A, w); A[0] = 4 * creal(A[0]) * cimag(A[0]) * I; A[1] = 4 * creal(A[1]) * cimag(A[1]) * I; i = 2; for(y = 2; y < m; y <<= 1){ for(; i < 2*y; i+=2){ int j = i^(y-1); A[i] = (A[i] + conj(A[j]))*(A[i] - conj(A[j])); A[j] = -conj(A[i]); } } for(i = 0; i < m; i+=2){ A[i/2] = (A[i]+A[i^1] - (A[i]-A[i^1])*w[i/2]*I)/(4*m); // A[i/2] = (2*A[i] - (A[i]-A[i^1])*(1 + w[i/2]*I))/(4*m); } ifft(k-1, A, w); } int main() __attribute__((optimize("fast-math"))); int main(){ int l, mm, q; int i, j; const long double arg = -PI2/m; // const int B = 100352; const int B = 100001; // const int B = 1<<17; for(i=0, j=m/4; j; i++, j>>=1){ v[i] = cexpl(I * (arg * j)); } genw(0, k-2, 1); readall(); l = read_uint(); mm = read_uint(); read_uint(); for(i=0;i<l;i++){ int a; a = read_uint(); if(a&1) C[a/2] += B; else C[a/2] += 1; } for(i=0;i<mm;i++){ int a; a = read_uint(); if(a&1) C[((1<<18)-a)/2] += B*I; else C[((1<<18)-a)/2] += I; } q = read_uint(); convolver(k, C, w); double *CC = (double *)C; unsigned long long int tmp =(unsigned long long)(CC[0]+0.5)/B/B; for(i=1;i<=q/2;i++){ tmp += CC[i]+0.5; write_uintln(tmp%B); tmp /= B; write_uintln(tmp%B); tmp /= B; } if(q&1){ tmp += CC[i]+0.5; write_uintln(tmp%B); } writeall(); return 0; }