結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | satanic |
提出日時 | 2018-07-27 22:30:19 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 8,634 bytes |
コンパイル時間 | 1,127 ms |
コンパイル使用メモリ | 122,500 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-05 01:37:45 |
合計ジャッジ時間 | 1,934 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 1 ms
6,944 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,940 KB |
testcase_08 | AC | 2 ms
6,944 KB |
testcase_09 | AC | 1 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,940 KB |
testcase_21 | AC | 2 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,940 KB |
ソースコード
// need #include <iostream> #include <algorithm> // data structure #include <bitset> #include <map> #include <queue> #include <set> #include <stack> #include <string> #include <utility> #include <vector> #include <complex> //#include <deque> #include <valarray> // stream //#include <istream> //#include <sstream> //#include <ostream> #include <fstream> // etc #include <cassert> #include <cmath> #include <functional> #include <iomanip> #include <chrono> #include <random> #include <numeric> // input #define INIT std::ios::sync_with_stdio(false);std::cin.tie(0); #define VAR(type, ...)type __VA_ARGS__;MACRO_VAR_Scan(__VA_ARGS__); template<typename T> void MACRO_VAR_Scan(T& t) { std::cin >> t; } template<typename First, typename...Rest>void MACRO_VAR_Scan(First& first, Rest&...rest) { std::cin >> first; MACRO_VAR_Scan(rest...); } #define VEC_ROW(type, n, ...)std::vector<type> __VA_ARGS__;MACRO_VEC_ROW_Init(n, __VA_ARGS__); for(int i=0; i<n; ++i){MACRO_VEC_ROW_Scan(i, __VA_ARGS__);} template<typename T> void MACRO_VEC_ROW_Init(int n, T& t) { t.resize(n); } template<typename First, typename...Rest>void MACRO_VEC_ROW_Init(int n, First& first, Rest&...rest) { first.resize(n); MACRO_VEC_ROW_Init(n, rest...); } template<typename T> void MACRO_VEC_ROW_Scan(int p, T& t) { std::cin >> t[p]; } template<typename First, typename...Rest>void MACRO_VEC_ROW_Scan(int p, First& first, Rest&...rest) { std::cin >> first[p]; MACRO_VEC_ROW_Scan(p, rest...); } #define VEC(type, c, n) std::vector<type> c(n);for(auto& i:c)std::cin>>i; #define MAT(type, c, m, n) std::vector<std::vector<type>> c(m, std::vector<type>(n));for(auto& r:c)for(auto& i:r)std::cin>>i; // output #define OUT(d) std::cout<<(d); #define FOUT(n, d) std::cout<<std::fixed<<std::setprecision(n)<<(d); #define SOUT(n, c, d) std::cout<<std::setw(n)<<std::setfill(c)<<(d); #define SP std::cout<<" "; #define TAB std::cout<<"\t"; #define BR std::cout<<"\n"; #define SPBR(i, n) std::cout<<(i + 1 == n ? '\n' : ' '); #define ENDL std::cout<<std::endl; #define FLUSH std::cout<<std::flush; #define SHOW(d) {std::cerr << #d << "\t:" << (d) << "\n";} #define SHOWVECTOR(v) {std::cerr << #v << "\t:";for(const auto& xxx : v){std::cerr << xxx << " ";}std::cerr << "\n";} #define SHOWVECTOR2(v) {std::cerr << #v << "\t:\n";for(const auto& xxx : v){for(const auto& yyy : xxx){std::cerr << yyy << " ";}std::cerr << "\n";}} #define SHOWQUEUE(a) {auto tmp(a);std::cerr << #a << "\t:";while(!tmp.empty()){std::cerr << tmp.front() << " ";tmp.pop();}std::cerr << "\n";} // utility #define ALL(a) (a).begin(),(a).end() #define FOR(i, a, b) for(int i=(a);i<(b);++i) #define RFOR(i, a, b) for(int i=(b)-1;i>=(a);--i) #define REP(i, n) for(int i=0;i<int(n);++i) #define RREP(i, n) for(int i=int(n)-1;i>=0;--i) #define FORLL(i, a, b) for(ll i=ll(a);i<ll(b);++i) #define RFORLL(i, a, b) for(ll i=ll(b)-1;i>=ll(a);--i) #define REPLL(i, n) for(ll i=0;i<ll(n);++i) #define RREPLL(i, n) for(ll i=ll(n)-1;i>=0;--i) #define IN(a, x, b) (a<=x && x<b) template<typename T> inline T CHMAX(T& a, const T b) { return a = (a < b) ? b : a; } template<typename T> inline T CHMIN(T& a, const T b) { return a = (a > b) ? b : a; } #define EXCEPTION(msg) throw std::string("Exception : " msg " [ in ") + __func__ + " : " + std::to_string(__LINE__) + " lines ]" #define TRY(cond, msg) try {if (cond) EXCEPTION(msg);}catch (std::string s) {std::cerr << s << std::endl;} void CHECKTIME(std::function<void()> f) { auto start = std::chrono::system_clock::now(); f(); auto end = std::chrono::system_clock::now(); auto res = std::chrono::duration_cast<std::chrono::nanoseconds>((end - start)).count(); std::cerr << "[Time:" << res << "ns (" << res / (1.0e9) << "s)]\n"; } // test template<class T> std::vector<std::vector<T>> VV(int n, int m, T init = T()) { return std::vector<std::vector<T>>(n, std::vector<T>(m, init)); } template<typename S, typename T> std::ostream& operator<<(std::ostream& os, std::pair<S, T> p) { os << "(" << p.first << ", " << p.second << ")"; return os; } // type/const #define int ll using ll = long long; using ull = unsigned long long; using ld = long double; using PAIR = std::pair<int, int>; using PAIRLL = std::pair<ll, ll>; constexpr int INFINT = 1 << 30; // 1.07x10^ 9 constexpr int INFINT_LIM = (1LL << 31) - 1; // 2.15x10^ 9 constexpr ll INFLL = 1LL << 60; // 1.15x10^18 constexpr ll INFLL_LIM = (1LL << 62) - 1 + (1LL << 62); // 9.22x10^18 constexpr double EPS = 1e-9; constexpr int MOD = 1000000007; constexpr double PI = 3.141592653589793238462643383279; template<class T, size_t N> void FILL(T(&a)[N], const T& val) { for (auto& x : a) x = val; } template<class ARY, size_t N, size_t M, class T> void FILL(ARY(&a)[N][M], const T& val) { for (auto& b : a) FILL(b, val); } template<class T> void FILL(std::vector<T>& a, const T& val) { for (auto& x : a) x = val; } template<class ARY, class T> void FILL(std::vector<std::vector<ARY>>& a, const T& val) { for (auto& b : a) FILL(b, val); } // ------------>8------------------------------------->8------------ template<class T> class MatrixMOD { private: std::valarray<std::valarray<T>> mat; public: MatrixMOD(size_t m = 0, size_t n = 0, T init = 0) { if (n == 0) n = m; mat.resize(m); for (size_t i = 0; i < m; ++i) mat[i].resize(n, init); } MatrixMOD(std::valarray<std::valarray<T>> a) { mat = a; } MatrixMOD<T> init(size_t m = 0, size_t n = 0, T init = 0) { if (n == 0) n = m; mat.resize(m); for (size_t i = 0; i < m; ++i) mat[i].resize(n, init); return *this; } std::valarray<T>& operator[](size_t i) { return mat[i]; } const std::valarray<T>& operator[](size_t i) const { return mat[i]; } MatrixMOD<T>& operator=(const MatrixMOD<T>& r) { for (size_t i = 0; i < mat.size(); ++i) mat[i] = r[i]; return *this; } MatrixMOD<T> operator+() const { return mat; } MatrixMOD<T> operator-() const { MatrixMOD<T> res(mat.size()); for (size_t i = 0; i < mat.size(); ++i) res[i] = (MOD - mat[i]) %= MOD; return res; } MatrixMOD<T>& operator+=(const MatrixMOD<T>& r) { for (size_t i = 0; i < mat.size(); ++i) (mat[i] += r[i]) %= MOD; return *this; } MatrixMOD<T>& operator+=(const T& x) { for (size_t i = 0; i < mat.size(); ++i) (mat[i] += x) %= MOD; return *this; } MatrixMOD<T>& operator-=(const MatrixMOD<T>& r) { return *this += MOD - r; } MatrixMOD<T>& operator-=(const T& x) { return *this += MOD - x; } MatrixMOD<T>& operator*=(const MatrixMOD<T>& r) { // O(N^3) MatrixMOD<T> res(*this); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < r[0].size(); ++j) { res[i][j] = 0; for (size_t k = 0; k < mat[0].size(); ++k) { (res[i][j] += mat[i][k] * r[k][j] % MOD) %= MOD; } } } return *this = res; } MatrixMOD<T>& operator*=(const T& x) { for (size_t i = 0; i < mat.size(); ++i) (mat[i] *= x) %= MOD; return *this; } MatrixMOD<T>& operator%=(const T& mod) { for (size_t i = 0; i < mat.size(); ++i) mat[i] %= MOD; return *this; } MatrixMOD<T>& operator^=(ll p) { // O(N^3 logP) MatrixMOD<T> res(*this); for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < mat[0].size(); ++j) { res[i][j] = i == j; } } while (p) { if (p & 1) (res *= (*this)) %= MOD; ((*this) *= (*this)) %= MOD; p >>= 1; } for (size_t i = 0; i < mat.size(); ++i) mat[i] = res[i]; return *this; } MatrixMOD<T> operator+(const MatrixMOD& r) const { MatrixMOD<T> res(mat); return res += r; } MatrixMOD<T> operator-(const MatrixMOD& r) const { MatrixMOD<T> res(mat); return res -= r; } MatrixMOD<T> operator*(const MatrixMOD& r) const { MatrixMOD<T> res(mat); return res *= r; } MatrixMOD<T> operator*(const T& r) const { MatrixMOD<T> res(mat); return res *= r; } MatrixMOD<T> operator^(const int& p) const { MatrixMOD<T> res(mat); return res ^= p; } MatrixMOD<T> t() const { MatrixMOD<T> res(mat[0].size(), mat.size(), 0); for (size_t i = 0; i < mat[0].size(); ++i) { for (size_t j = 0; j < mat.size(); ++j) { res[i][j] = mat[j][i]; } } return res; } static MatrixMOD<T> getUnit(size_t n) { MatrixMOD<T> res(n, n, 0); for (size_t i = 0; i < n; ++i) res[i][i] = 1; return res; } void show() const { for (const auto& r : mat) { for (const auto & x : r) { std::cerr << x << "\t"; } std::cerr << std::endl; } } }; signed main() { INIT; VAR(int, n); MatrixMOD<int> A(2, 2, 0); A[0][0] = A[0][1] = A[1][0] = 1; int ans = 1; { auto B(A); B ^= n; ans *= B[1][0]; } { auto B(A); B ^= n + 1; (ans *= B[1][0]) %= MOD; } OUT(ans)BR; return 0; }