結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | ミドリムシ |
提出日時 | 2018-07-27 22:39:16 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 6,034 bytes |
コンパイル時間 | 791 ms |
コンパイル使用メモリ | 71,516 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-05 02:48:40 |
合計ジャッジ時間 | 1,451 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 1 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include <iostream> #include <algorithm> #include <vector> using namespace std; template<class T> inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; } template<class T> inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; } template<class T> inline void POSS(T condition){ if(condition) cout << "POSSIBLE" << endl; else cout << "IMPOSSIBLE" << endl; } template<class T> inline void Poss(T condition){ if(condition) cout << "Possible" << endl; else cout << "Impossible" << endl; } template<class T> inline void First(T condition){ if(condition) cout << "First" << endl; else cout << "Second" << endl; } int character_count(string text, char character){ int ans = 0; for(int i = 0; i < text.size(); i++){ ans += (text[i] == character); } return ans; } long power(long base, long exponent, long module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){ long root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }} struct position{ int y, x; }; position move_pattern[4] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; // double euclidean(position first, position second){ return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); } template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); } template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++){ ans += to_string(*i) + " "; } ans.pop_back(); cout << ans << endl; } template<class T> T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template<class T> T lcm(T a, T b){ return a / gcd(a, b) * b; } #define mod long(1e9 + 7) #define all(x) (x).begin(), (x).end() #define bitcount(n) __builtin_popcountl(long(n)) #define fcout cout << fixed << setprecision(10) #define highest(x) (63 - __builtin_clzl(x)) template< class T > struct Matrix { vector< vector< T > > A; Matrix() {} Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {} Matrix(size_t n) : A(n, vector< T >(n, 0)) {}; Matrix(vector< vector< T > > x) : A(x) {}; size_t height() const { return (A.size()); } size_t width() const { return (A[0].size()); } inline const vector< T > &operator[](int k) const { return (A.at(k)); } inline vector< T > &operator[](int k) { return (A.at(k)); } static Matrix I(size_t n) { Matrix mat(n); for(int i = 0; i < n; i++) mat[i][i] = 1; return (mat); } Matrix &operator+=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] += B[i][j]; return (*this); } Matrix &operator-=(const Matrix &B) { size_t n = height(), m = width(); assert(n == B.height() && m == B.width()); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) (*this)[i][j] -= B[i][j]; return (*this); } Matrix &operator*=(const Matrix &B) { size_t n = height(), m = B.width(), p = width(); // assert(p == B.height()); vector< vector< T > > C(n, vector< T >(m, 0)); for(int i = 0; i < n; i++) for(int j = 0; j < m; j++) for(int k = 0; k < p; k++) C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]) % mod; A.swap(C); return (*this); } Matrix &operator^=(long long k) { Matrix B = Matrix::I(height()); while(k > 0) { if(k & 1) B *= *this; *this *= *this; k >>= 1LL; } A.swap(B.A); return (*this); } Matrix operator+(const Matrix &B) const { return (Matrix(*this) += B); } Matrix operator-(const Matrix &B) const { return (Matrix(*this) -= B); } Matrix operator*(const Matrix &B) const { return (Matrix(*this) *= B); } Matrix operator^(const long long k) const { return (Matrix(*this) ^= k); } friend ostream &operator<<(ostream &os, Matrix &p) { size_t n = p.height(), m = p.width(); for(int i = 0; i < n; i++) { os << "["; for(int j = 0; j < m; j++) { os << p[i][j] << (j + 1 == m ? "]\n" : ","); } } return (os); } T determinant() { Matrix B(*this); assert(width() == height()); T ret = 1; for(int i = 0; i < width(); i++) { int idx = -1; for(int j = i; j < width(); j++) { if(B[j][i] != 0) idx = j; } if(idx == -1) return (0); if(i != idx) { ret *= -1; swap(B[i], B[idx]); } ret *= B[i][i]; T vv = B[i][i]; for(int j = 0; j < width(); j++) { B[i][j] /= vv; } for(int j = i + 1; j < width(); j++) { T a = B[j][i]; for(int k = 0; k < width(); k++) { B[j][k] -= B[i][k] * a; } } } return (ret); } }; Matrix<long> A, E; Matrix<long> power(long base){ if(base % 2){ return A * power(base - 1); }else if(base){ Matrix<long> root_ans = power(base / 2); return root_ans * root_ans; }else{ return E; } } int main(){ long N; cin >> N; A.A = {{1, 1}, {1, 0}}; E.A = {{1, 0}, {0, 1}}; cout << (power(N) * Matrix<long>({{1, 0}, {0, 0}}))[1][0] * (power(N + 1) * Matrix<long>({{1, 0}, {0, 0}}))[1][0] % mod << endl; }