結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | kurenaif |
提出日時 | 2018-07-27 22:51:09 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 10,138 bytes |
コンパイル時間 | 1,185 ms |
コンパイル使用メモリ | 119,860 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-05 03:11:47 |
合計ジャッジ時間 | 1,920 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,944 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,944 KB |
testcase_06 | AC | 2 ms
6,944 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,944 KB |
testcase_10 | AC | 2 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 2 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 2 ms
6,940 KB |
testcase_17 | AC | 2 ms
6,940 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 2 ms
6,940 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 1 ms
6,944 KB |
testcase_22 | AC | 2 ms
6,944 KB |
ソースコード
#include <iostream> #include <queue> #include <map> #include <list> #include <vector> #include <string> #include <stack> #include <limits> #include <climits> #include <cassert> #include <fstream> #include <cstring> #include <cmath> #include <bitset> #include <iomanip> #include <algorithm> #include <functional> #include <cstdio> #include <ciso646> #include <set> #include <array> #include <unordered_map> #include <unordered_set> #include <type_traits> using namespace std; #define FOR(i,a,b) for (int i=(a);i<(b);i++) #define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--) #define REP(i,n) for (int i=0;i<(n);i++) #define RREP(i,n) for (int i=(n)-1;i>=0;i--) #define VEC2(T, N, M) vector<T>(N, vector<T>(M)); #define inf 0x3f3f3f3f3f3f3f3f #define PB push_back #define MP make_pair #define ALL(a) (a).begin(),(a).end() #define SET(a,c) memset(a,c,sizeof a) #define CLR(a) memset(a,0,sizeof a) #define VS vector<string> #define VI vector<ll> #define DEBUG(x) cout<<#x<<": "<<x<<endl #define MIN(a,b) (a>b?b:a) #define MAX(a,b) (a>b?a:b) #define pi 2*acos(0.0) #define INFILE() freopen("in0.txt","r",stdin) #define OUTFILE()freopen("out0.txt","w",stdout) #define ll long long #define ull unsigned long long #define pii pair<ll,ll> #define pcc pair<char,char> #define pic pair<ll,char> #define pci pair<char,ll> #define eps 1e-14 #define FST first #define SEC second #define SETUP cin.tie(0), ios::sync_with_stdio(false), cout << setprecision(15) << std::fixed; template <class T> using vec2 = std::vector<vector<T>>; namespace { struct input_returnner { ll N; input_returnner(ll N_ = 0) :N(N_) {} template<typename T> operator vector<T>() const { vector<T> res(N); for (auto &a : res) cin >> a; return std::move(res); } template<typename T> operator T() const { T res; cin >> res; return res; } template<typename T> T operator - (T right) { return T(input_returnner()) - right; } template<typename T> T operator + (T right) { return T(input_returnner()) + right; } template<typename T> T operator * (T right) { return T(input_returnner()) * right; } template<typename T> T operator / (T right) { return T(input_returnner()) / right; } template<typename T> T operator << (T right) { return T(input_returnner()) << right; } template<typename T> T operator >> (T right) { return T(input_returnner()) >> right; } }; template<typename T> input_returnner in() { return in<T>(); } input_returnner in() { return input_returnner(); } input_returnner in(ll N) { return std::move(input_returnner(N)); } } template<typename T> istream& operator >> (istream& is, vector<T>& vec) { for (T& x : vec) is >> x; return is; } template < typename T > struct is_vector : std::false_type {}; template < typename T > struct is_vector<std::vector<T>> : std::true_type {}; template < typename T > constexpr bool is_vector_v = is_vector<T>::value; template <typename T> std::ostream& operator<< (std::ostream& out, const std::vector<T>& v) { if (!v.empty()) { for (int i = 0; i < v.size(); ++i) { out << v[i] << (i == v.size() - 1 ? "\n" : (is_vector_v<T> ? "" : ", ")); } } return out; } namespace std { // ref: https://stackoverflow.com/questions/7110301/generic-hash-for-tuples-in-unordered-map-unordered-set template <class T> inline void hash_combine(std::size_t& seed, T const& v) { seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2); } // Recursive template code derived from Matthieu M. template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1> struct HashValueImpl { static void apply(size_t& seed, Tuple const& tuple) { HashValueImpl<Tuple, Index - 1>::apply(seed, tuple); hash_combine(seed, std::get<Index>(tuple)); } }; template <class Tuple> struct HashValueImpl<Tuple, 0> { static void apply(size_t& seed, Tuple const& tuple) { hash_combine(seed, std::get<0>(tuple)); } }; template <typename ... TT> struct hash<std::tuple<TT...>> { size_t operator()(std::tuple<TT...> const& tt) const { size_t seed = 0; HashValueImpl<std::tuple<TT...> >::apply(seed, tt); return seed; } }; template <class T, class U> class hash<std::pair<T, U>> { public: size_t operator()(const std::pair<T, U>& x) const { return hash<std::tuple<T, U>>()(std::tie(x.first, x.second)); } }; } // ref: https://stackoverflow.com/questions/6245735/pretty-print-stdtuple namespace aux { template<std::size_t...> struct seq {}; template<std::size_t N, std::size_t... Is> struct gen_seq : gen_seq<N - 1, N - 1, Is...> {}; template<std::size_t... Is> struct gen_seq<0, Is...> : seq<Is...> {}; template<class Ch, class Tr, class Tuple, std::size_t... Is> void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>) { using swallow = int[]; (void)swallow { 0, (void(os << (Is == 0 ? "" : ", ") << std::get<Is>(t)), 0)... }; } } // aux:: template<class Ch, class Tr, class... Args> auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t) -> std::basic_ostream<Ch, Tr>& { os << "("; aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>()); return os << ")"; } template<class S, class T> std::ostream & operator<<(std::ostream & os, const std::pair<S, T> & p) { return os << "(" << p.first << ", " << p.second << ")"; } // ref: https://stackoverflow.com/questions/8542591/c11-reverse-range-based-for-loo�Fp template <typename T> struct reversion_wrapper { T& iterable; }; template <typename T> auto begin(reversion_wrapper<T> w) { return std::rbegin(w.iterable); } template <typename T> auto end(reversion_wrapper<T> w) { return std::rend(w.iterable); } template <typename T> reversion_wrapper<T> REV(T&& iterable) { return { iterable }; } ll MOD = 1e9 + 7; class prime; void solve(); signed main() { SETUP; solve(); #ifdef _DEBUG system("pause"); #endif return 0; } #define int ll // template template<class T> struct fkvector { public: vector<T> v; fkvector(size_t size) :v(size) {} size_t size() const { return v.size(); } T& operator [] (const int index) { return v[index]; } T dot(const fkvector<T>& right) { assert(v.size() == right.size()); T res = 0; for (int i = 0; i < right.size(); ++i) { res += v[i] * right.v[i]; } return res; } void operator = (const fkvector<T>& right) { v.clear(); v.resize(right.size()); copy(right.v.begin(), right.v.end(), v.begin()); } fkvector<T> operator + (const fkvector<T>& right) { assert(v.size() == right.size()); fkvector<T> res(v.size()); for (size_t i = 0; i < v.size(); ++i) { res[i] = v[i] + right.v[i]; } return res; } fkvector<T> operator - (const fkvector<T>& right) { assert(v.size() == right.size()); fkvector<T> res(v.size()); for (size_t i = 0; i < v.size(); ++i) { res[i] = v[i] - right.v[i]; } return res; } void operator += (const fkvector<T>& right) { assert(v.size() == right.size()); *this = *this + right; } void operator -= (const fkvector<T>& right) { assert(v.size() == right.size()); *this = *this - right; } void print() { cout << "{"; for (int i = 0; i < v.size()-1; ++i) { cout << v[i] << ", "; } cout << v.back(); cout << "}" << endl; } }; template<class T> struct fkmat { vector<vector<T> > mat; size_t getRowCount() const { return mat.size(); } size_t getColomnCount() const { return mat[0].size(); } size_t size() const { return mat.size(); } fkmat(size_t size_row,size_t size_colomn):mat(size_row, vector<T>(size_colomn)) {} vector<T>& operator [] (const int index) { return mat[index]; } //Identity matrix fkmat<T> Identity() { for (int i = 0; i < mat.size(); ++i) { mat[i][i] = 1; } return *this; } void operator = (const fkmat<T>& right) { mat.clear(); mat.resize(right.size()); for (int i = 0; i < right.size(); ++i) { mat[i] = right.mat[i]; } } fkmat<T> operator + (const fkmat<T>& right) { fkmat<T> res(getRowCount(), getColomnCount()); for (int i = 0; i < mat.size(); ++i) { for (int j = 0; j < mat[i].size(); ++j) { res[i][j] = mat[i][j] + right.mat[i][j]; } } return res; } fkmat<T> operator - (const fkmat<T>& right) { fkmat<T> res(getRowCount(), getColomnCount()); for (int i = 0; i < mat.size(); ++i) { for (int j = 0; j < mat[i].size(); ++j) { res[i][j] = mat[i][j] - right.mat[i][j]; } } return res; } fkmat<T> operator * (const fkmat<T>& right) { fkmat<T> res(getRowCount(), getColomnCount()); assert(getColomnCount() == right.getRowCount()); for (int r = 0; r < getRowCount(); ++r) { for (int c = 0; c < right.getColomnCount(); ++c) { for (int k = 0; k < getColomnCount(); ++k) { res[r][c] += mat[r][k] * right.mat[k][c]; res[r][c] %= MOD; } } } return res; } void operator += (const fkmat<T>& right) { for (int i = 0; i < mat.size(); ++i) { for (int j = 0; j < mat[i].size(); ++j) { mat[i][j] += right.mat[i][j]; } } } void operator -= (const fkmat<T>& right) { for (int i = 0; i < mat.size(); ++i) { for (int j = 0; j < mat[i].size(); ++j) { mat[i][j] -= right.mat[i][j]; } } } void operator *= (const fkmat<T>& right) { *this = *this * right; } //power n void pow(long long n, fkmat<T>* dst) { dst->Identity(); fkmat<T> x(getRowCount(), getColomnCount()); x.mat = mat; while (n > 0) { if (n & 1) *dst = *dst * x; x *= x; x %= MOD; n >>= 1; } } //power n void pow(long long n) { fkmat<T> res(getRowCount(), getColomnCount()); res = fkmat<T>(getRowCount(), getColomnCount()).Identity(); fkmat<T> x(getRowCount(), getColomnCount()); x = *this; while (n > 0) { if (n & 1) res = res * x; x *= x; n >>= 1; } *this = res; } void print() { for (size_t i = 0; i < mat.size(); ++i) { for (size_t j = 0; j < mat[i].size(); ++j) { cout << mat[i][j] << " "; } cout << endl; } } }; void solve() { int N; cin >> N; fkmat<int> m(2, 2); for (int i = 0; i < m.size(); ++i) { for (int j = 0; j < m[i].size(); ++j) { m[i][j] = i; } } m[0][0] = 1; m[0][1] = 1; m[1][0] = 1; m[1][1] = 0; m.pow(N); cout << (m[1][0]*m[0][0])%MOD << endl; }