結果
| 問題 | No.718 行列のできるフィボナッチ数列道場 (1) | 
| コンテスト | |
| ユーザー |  NOSS | 
| 提出日時 | 2018-07-27 23:18:34 | 
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) | 
| 結果 | 
                                AC
                                 
                             | 
| 実行時間 | 2 ms / 2,000 ms | 
| コード長 | 1,650 bytes | 
| コンパイル時間 | 1,833 ms | 
| コンパイル使用メモリ | 178,404 KB | 
| 実行使用メモリ | 6,944 KB | 
| 最終ジャッジ日時 | 2024-07-05 04:56:40 | 
| 合計ジャッジ時間 | 2,544 ms | 
| ジャッジサーバーID (参考情報) | judge4 / judge2 | 
(要ログイン)
| ファイルパターン | 結果 | 
|---|---|
| sample | AC * 3 | 
| other | AC * 20 | 
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> P;
typedef pair<ll, pair<ll, ll> > P3;
const ll MOD = ll(1e9 + 7);
const ll LLINF = LLONG_MAX;
const int IINF = INT_MAX;
const int MAX_N = int(2e3) + 5;
const double EPS = 1e-8;
int dx[] = {1, 0, -1, 0}, dy[] = {0, 1, 0, -1};
#define SORT(v) sort((v).begin(), (v).end())
#define SORTR(v) sort((v).rbegin(), (v).rend())
#define REP(i, n) for (int i = 0; i < n; i++)
#define REPR(i, n) for (int i = n; i >= 0; i--)
#define FOR(i, m, n) for (int i = m; i < n; i++)
typedef vector<vector<ll> > mat;
mat init(mat m, int xlen, int ylen){
    m.resize(xlen);
    for(int i=0; i<xlen; i++){
        m[i].resize(ylen);
        for(int j=0; j<ylen; j++){
            m[i][j] = 0;
        }
    }
    return m;
}
mat mul(mat a, mat b){
    mat c;
    c = init(c,a.size(),b[0].size());
    for (int i=0;i<a.size();i++){
        for(int k=0;k<b.size();k++){
            for(int j=0;j<b[0].size();j++){
                c[i][j] = (c[i][j] + a[i][k]*b[k][j]%MOD)%MOD;
            }
        }
    }
    return c;
}
mat pow(mat a, ll n){
    mat b;
    b = init(b, a.size(), a.size());
    for(int i=0;i<a.size();i++){
        b[i][i] = 1;
    }
    while(n>0){
        if (n & 1) b = mul(a, b);
        a = mul(a, a);
        n >>= 1;
    }
    return b;
}
ll fibo(ll n){
    mat a;
    a.resize(2);
    a[0].resize(2);
    a[1].resize(2);
    a[0][0] = 1; a[0][1] = 1;
    a[1][0] = 1; a[1][1] = 0;
    a = pow(a,n);
    return a[0][0]*a[1][0]%MOD;
}
int main() {
    ll n;
    cin >> n;
    cout << fibo(n) << endl;
    return 0;
}
            
            
            
        