結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | nadare |
提出日時 | 2018-07-27 23:31:33 |
言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
結果 |
RE
|
実行時間 | - |
コード長 | 2,092 bytes |
コンパイル時間 | 80 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 11,008 KB |
最終ジャッジ日時 | 2024-07-05 05:27:33 |
合計ジャッジ時間 | 1,548 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | RE | - |
testcase_01 | RE | - |
testcase_02 | RE | - |
testcase_03 | RE | - |
testcase_04 | RE | - |
testcase_05 | RE | - |
testcase_06 | RE | - |
testcase_07 | RE | - |
testcase_08 | RE | - |
testcase_09 | RE | - |
testcase_10 | RE | - |
testcase_11 | RE | - |
testcase_12 | RE | - |
testcase_13 | RE | - |
testcase_14 | RE | - |
testcase_15 | RE | - |
testcase_16 | RE | - |
testcase_17 | RE | - |
testcase_18 | RE | - |
testcase_19 | RE | - |
testcase_20 | RE | - |
testcase_21 | RE | - |
testcase_22 | RE | - |
ソースコード
# -*- coding: utf-8 -*- """ https://kukuruku.co/post/the-nth-fibonacci-number-in-olog-n/ からO(logn)のフィボナッチ数求めるやつを持ってきて改造した """ class MatrixFibonacci: MOD = 10**9+7 Q = [[1, 1], [1, 0]] def __init__(self): self.__memo = {} def __multiply_matrices(self, M1, M2): """Matrices miltiplication (the matrices are expected in the form of a list of 2x2 size).""" a11 = M1[0][0]*M2[0][0] + M1[0][1]*M2[1][0] a12 = M1[0][0]*M2[0][1] + M1[0][1]*M2[1][1] a21 = M1[1][0]*M2[0][0] + M1[1][1]*M2[1][0] a22 = M1[1][0]*M2[0][1] + M1[1][1]*M2[1][1] r = [[a11%MOD, a12%MOD], [a21%MOD, a22%MOD]] return r def __get_matrix_power(self, M, p): """Matrix exponentiation (it is expected that p that is equal to the power of 2).""" if p == 1: return M if p in self.__memo: return self.__memo[p] K = self.__get_matrix_power(M, int(p/2)) R = self.__multiply_matrices(K, K) self.__memo[p] = R return R def get_number(self, n): """Getting the nth Fibonacci number (a non-negative integer number is expected as n).""" if n == 0: return 0 if n == 1: return 1 # Factoring down the passed power into the powers that are equal to the power of 2), # i.e. 62 = 2^5 + 2^4 + 2^3 + 2^2 + 2^0 = 32 + 16 + 8 + 4 + 1. powers = [int(pow(2, b)) for (b, d) in enumerate(reversed(bin(n-1)[2:])) if d == '1'] # The same, but less pythonic: http://pastebin.com/h8cKDkHX matrices = [self.__get_matrix_power(MatrixFibonacci.Q, p) for p in powers] while len(matrices) > 1: M1 = matrices.pop() M2 = matrices.pop() R = self.__multiply_matrices(M1, M2) matrices.append(R) return matrices[0][0][0] mfib = MatrixFibonacci() N = int(input()) print((mfib.get_number(N+1)*mfib.get_number(N))%(10**9+7))