結果

問題 No.720 行列のできるフィボナッチ数列道場 (2)
ユーザー ミドリムシ
提出日時 2018-07-27 23:34:27
言語 C++11(廃止可能性あり)
(gcc 13.3.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 6,302 bytes
コンパイル時間 830 ms
コンパイル使用メモリ 71,524 KB
実行使用メモリ 5,376 KB
最終ジャッジ日時 2024-07-05 05:32:15
合計ジャッジ時間 1,441 ms
ジャッジサーバーID
(参考情報)
judge1 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 20
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <iostream>
#include <algorithm>
#include <vector>
using namespace std;
template<class T> inline void YES(T condition){ if(condition) cout << "YES" << endl; else cout << "NO" << endl; }
template<class T> inline void Yes(T condition){ if(condition) cout << "Yes" << endl; else cout << "No" << endl; }
template<class T> inline void POSS(T condition){ if(condition) cout << "POSSIBLE" << endl; else cout << "IMPOSSIBLE" << endl; }
template<class T> inline void Poss(T condition){ if(condition) cout << "Possible" << endl; else cout << "Impossible" << endl; }
template<class T> inline void First(T condition){ if(condition) cout << "First" << endl; else cout << "Second" << endl; }
int character_count(string text, char character){ int ans = 0; for(int i = 0; i < text.size(); i++){ ans += (text[i] == character); } return ans; }
long power(long base, long exponent, long module){ if(exponent % 2){ return power(base, exponent - 1, module) * base % module; }else if(exponent){
    long root_ans = power(base, exponent / 2, module); return root_ans * root_ans % module; }else{ return 1; }}
struct position{ int y, x; }; position move_pattern[4] = {{-1, 0}, {0, 1}, {1, 0}, {0, -1}}; // double euclidean(position first, position second){
    return sqrt((second.x - first.x) * (second.x - first.x) + (second.y - first.y) * (second.y - first.y)); }
template<class T, class U> string to_string(pair<T, U> x){ return to_string(x.first) + "," + to_string(x.second); }
template<class itr> void array_output(itr start, itr goal){ string ans; for(auto i = start; i != goal; i++){ ans += to_string(*i) + " "; } ans
    .pop_back(); cout << ans << endl; }
template<class T> T gcd(T a, T b){ if(a && b){ return gcd(min(a, b), max(a, b) % min(a, b)); }else{ return a; }} template<class T> T lcm(T a, T b){
    return a / gcd(a, b) * b; }
#define mod long(1e9 + 7)
#define all(x) (x).begin(), (x).end()
#define bitcount(n) __builtin_popcountl(long(n))
#define fcout cout << fixed << setprecision(10)
#define highest(x) (63 - __builtin_clzl(x))
template< class T >
struct Matrix
{
vector< vector< T > > A;
Matrix() {}
Matrix(size_t n, size_t m) : A(n, vector< T >(m, 0)) {}
Matrix(size_t n) : A(n, vector< T >(n, 0)) {};
Matrix(vector< vector< T > > x) : A(x) {};
size_t height() const
{
return (A.size());
}
size_t width() const
{
return (A[0].size());
}
inline const vector< T > &operator[](int k) const
{
return (A.at(k));
}
inline vector< T > &operator[](int k)
{
return (A.at(k));
}
static Matrix I(size_t n)
{
Matrix mat(n);
for(int i = 0; i < n; i++) mat[i][i] = 1;
return (mat);
}
Matrix &operator+=(const Matrix &B)
{
size_t n = height(), m = width();
// assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] = ((*this)[i][j] + B[i][j]) % mod;
return (*this);
}
Matrix &operator-=(const Matrix &B)
{
size_t n = height(), m = width();
assert(n == B.height() && m == B.width());
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
(*this)[i][j] -= B[i][j];
return (*this);
}
Matrix &operator*=(const Matrix &B)
{
size_t n = height(), m = B.width(), p = width();
// assert(p == B.height());
vector< vector< T > > C(n, vector< T >(m, 0));
for(int i = 0; i < n; i++)
for(int j = 0; j < m; j++)
for(int k = 0; k < p; k++)
C[i][j] = (C[i][j] + (*this)[i][k] * B[k][j]) % mod;
A.swap(C);
return (*this);
}
Matrix &operator^=(long long k)
{
Matrix B = Matrix::I(height());
while(k > 0) {
if(k & 1) B *= *this;
*this *= *this;
k >>= 1LL;
}
A.swap(B.A);
return (*this);
}
Matrix operator+(const Matrix &B) const
{
return (Matrix(*this) += B);
}
Matrix operator-(const Matrix &B) const
{
return (Matrix(*this) -= B);
}
Matrix operator*(const Matrix &B) const
{
return (Matrix(*this) *= B);
}
Matrix operator^(const long long k) const
{
return (Matrix(*this) ^= k);
}
friend ostream &operator<<(ostream &os, Matrix &p)
{
size_t n = p.height(), m = p.width();
for(int i = 0; i < n; i++) {
os << "[";
for(int j = 0; j < m; j++) {
os << p[i][j] << (j + 1 == m ? "]\n" : ",");
}
}
return (os);
}
T determinant()
{
Matrix B(*this);
assert(width() == height());
T ret = 1;
for(int i = 0; i < width(); i++) {
int idx = -1;
for(int j = i; j < width(); j++) {
if(B[j][i] != 0) idx = j;
}
if(idx == -1) return (0);
if(i != idx) {
ret *= -1;
swap(B[i], B[idx]);
}
ret *= B[i][i];
T vv = B[i][i];
for(int j = 0; j < width(); j++) {
B[i][j] /= vv;
}
for(int j = i + 1; j < width(); j++) {
T a = B[j][i];
for(int k = 0; k < width(); k++) {
B[j][k] -= B[i][k] * a;
}
}
}
return (ret);
}
};
Matrix<long> A, E;
Matrix<long> power(long base){
if(base % 2){
return A * power(base - 1);
}else if(base){
Matrix<long> root_ans = power(base / 2);
return root_ans * root_ans;
}else{
return E;
}
}
int M;
Matrix<long> fibonatti_sum(long base){
if(base % 2){
return fibonatti_sum(base - 1) + power(base * M);
}else if(base){
Matrix<long> root_ans = fibonatti_sum(base / 2);
return root_ans + root_ans * power(base * M / 2);
}else{
return Matrix<long>(2, 2);
}
}
int main(){
long N;
cin >> N >> M;
A.A = {{1, 1}, {1, 0}};
E.A = {{1, 0}, {0, 1}};
cout << fibonatti_sum(N)[1][0] << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0