結果
問題 | No.720 行列のできるフィボナッチ数列道場 (2) |
ユーザー | pekempey |
提出日時 | 2018-07-28 00:08:04 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 1,616 bytes |
コンパイル時間 | 660 ms |
コンパイル使用メモリ | 72,972 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-05 16:50:24 |
合計ジャッジ時間 | 1,532 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 1 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 1 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 1 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 1 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,944 KB |
testcase_13 | AC | 1 ms
6,940 KB |
testcase_14 | AC | 2 ms
6,944 KB |
testcase_15 | AC | 2 ms
6,940 KB |
testcase_16 | AC | 1 ms
6,940 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 1 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 1 ms
6,940 KB |
testcase_21 | AC | 1 ms
6,940 KB |
testcase_22 | AC | 1 ms
6,940 KB |
ソースコード
#include <iostream> #include <algorithm> #include <vector> #include <array> using namespace std; const int mod = 1e9 + 7; struct Modint { int n; Modint(int n = 0) : n(n) {} }; Modint operator+(Modint a, Modint b) { return (a.n += b.n) >= mod ? a.n - mod : a.n; } Modint operator-(Modint a, Modint b) { return (a.n -= b.n) < 0 ? a.n + mod : a.n; } Modint operator*(Modint a, Modint b) { return 1LL * a.n * b.n % mod; } Modint &operator+=(Modint &a, Modint b) { return a = a + b; } Modint &operator-=(Modint &a, Modint b) { return a = a - b; } Modint &operator*=(Modint &a, Modint b) { return a = a * b; } // ax + b using P = pair<Modint, Modint>; P mul(P p, P q) { // p * q = ax^2 + bx + c = a(x + 1) + bx + c Modint a = p.first * q.first; Modint b = p.first * q.second + p.second * q.first; Modint c = p.second * q.second; return {a + b, a + c}; } P fib(long long x) { P res(0, 1); P a(1, 0); while (x > 0) { if (x & 1) { res = mul(res, a); } a = mul(a, a); x >>= 1; } return res; } // Find x^0 + x^m + ... + x^(m(n-1)) // if n is even then // x^0 + x^m + ... + x^{mn-m} // +x^{nm} + ... + x^{2mn-m} // = f(n/2)(1 + x^{nm}) // otherwise // 1 + x^m + ... + x^{mn-m} // = 1 + x^m f(n-1) P f(long long n, long long m) { if (n == 0) return {0, 0}; if (n % 2 == 0) { P res = f(n / 2, m); P p = fib(n * m / 2); p.second += 1; return mul(res, p); } else { P res = f(n - 1, m); res = mul(res, fib(m)); res.second += 1; return res; } } int main() { long long n, m; cin >> n >> m; cout << f(n + 1, m).first.n << endl; }