結果
| 問題 |
No.718 行列のできるフィボナッチ数列道場 (1)
|
| コンテスト | |
| ユーザー |
はまやんはまやん
|
| 提出日時 | 2018-07-28 08:52:55 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 2 ms / 2,000 ms |
| コード長 | 4,934 bytes |
| コンパイル時間 | 2,102 ms |
| コンパイル使用メモリ | 178,976 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-05 18:16:42 |
| 合計ジャッジ時間 | 2,349 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 |
ソースコード
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
int get() const { return (int)x; }
ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
return ModInt(u); }
bool operator==(ModInt that) const { return x == that.x; }
bool operator!=(ModInt that) const { return x != that.x; }
ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;
struct Fibonacci {
ll mod = 1000000007;
ll add(ll x, ll y) { return (x += y) >= mod ? x - mod : x; }
template<class... T> ll add(ll x, T... y) { return add(x, add(y...)); }
ll mul(ll x, ll y) {
return x * y % mod;
}
template<class... T> int mul(int x, T... y) { return mul(x, mul(y...)); }
int sub(int x, int y) { return add(x, mod - y); }
int modpow(int a, long long b) {
int ret = 1; while (b > 0) {
if (b & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; b >>= 1;
} return ret;
}
int modinv(int a) { return modpow(a, mod - 2); }
typedef vector<ll> Vec;
typedef vector<Vec> Mat;
Vec mulMatVec(Mat a, Vec b)
{
int n = b.size(); Vec ret(n, 0);
rep(i, 0, n) rep(j, 0, n) ret[i] = add(ret[i], mul(a[i][j], b[j]));
return ret;
}
Mat mulMatMat(Mat a, Mat b)
{
int n = a.size(); Mat ret(n, Vec(n, 0));
rep(i, 0, n) rep(j, 0, n) rep(k, 0, n) ret[i][j] = add(ret[i][j], mul(a[i][k], b[k][j]));
return ret;
}
Mat fastpow(Mat x, ll n)
{
Mat ret(x.size(), Vec(x.size(), 0));
rep(i, 0, x.size()) ret[i][i] = 1;
while (0 < n) { if ((n % 2) == 0) { x = mulMatMat(x, x); n >>= 1; } else { ret = mulMatMat(ret, x); --n; } }
return ret;
}
void printVec(Vec a) { cout << "[\t"; rep(i, 0, a.size()) cout << a[i] << "\t"; cout << "]" << endl; }
void printMat(Mat a) { rep(i, 0, a.size()) printVec(a[i]); }
ll query(ll N, ll _mod = 1000000007) {
mod = _mod;
Mat m = Mat(2, Vec(2, 0));
m[0][0] = 1;
m[0][1] = 1;
m[1][0] = 1;
Vec v = Vec(2, 0);
v[0] = 1;
m = fastpow(m, N);
v = mulMatVec(m, v);
return v[1];
}
};
/*---------------------------------------------------------------------------------------------------
∧_∧
∧_∧ (´<_` ) Welcome to My Coding Space!
( ´_ゝ`) / ⌒i
/ \ | |
/ / ̄ ̄ ̄ ̄/ |
__(__ニつ/ _/ .| .|____
\/____/ (u ⊃
---------------------------------------------------------------------------------------------------*/
ll N;
//---------------------------------------------------------------------------------------------------
void _main() {
cin >> N;
Fibonacci f;
mint fn = f.query(N);
mint fn1 = f.query(N + 1);
mint ans = fn * fn1;
cout << ans << endl;
}
はまやんはまやん