結果
問題 | No.718 行列のできるフィボナッチ数列道場 (1) |
ユーザー | はまやんはまやん |
提出日時 | 2018-07-28 08:52:55 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 4,934 bytes |
コンパイル時間 | 2,102 ms |
コンパイル使用メモリ | 178,976 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-05 18:16:42 |
合計ジャッジ時間 | 2,349 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 1 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 1 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 1 ms
5,376 KB |
testcase_11 | AC | 1 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 1 ms
5,376 KB |
testcase_16 | AC | 1 ms
5,376 KB |
testcase_17 | AC | 1 ms
5,376 KB |
testcase_18 | AC | 1 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
ソースコード
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<b;i++) #define rrep(i,a,b) for(int i=a;i>=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() #pragma GCC optimize ("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60; template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; } //--------------------------------------------------------------------------------------------------- template<int MOD> struct ModInt { static const int Mod = MOD; unsigned x; ModInt() : x(0) { } ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; } int get() const { return (int)x; } ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; } ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; } ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; } ModInt &operator/=(ModInt that) { return *this *= that.inverse(); } ModInt operator+(ModInt that) const { return ModInt(*this) += that; } ModInt operator-(ModInt that) const { return ModInt(*this) -= that; } ModInt operator*(ModInt that) const { return ModInt(*this) *= that; } ModInt operator/(ModInt that) const { return ModInt(*this) /= that; } ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0; while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); } return ModInt(u); } bool operator==(ModInt that) const { return x == that.x; } bool operator!=(ModInt that) const { return x != that.x; } ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; } }; template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; }; template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) { ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; } typedef ModInt<1000000007> mint; struct Fibonacci { ll mod = 1000000007; ll add(ll x, ll y) { return (x += y) >= mod ? x - mod : x; } template<class... T> ll add(ll x, T... y) { return add(x, add(y...)); } ll mul(ll x, ll y) { return x * y % mod; } template<class... T> int mul(int x, T... y) { return mul(x, mul(y...)); } int sub(int x, int y) { return add(x, mod - y); } int modpow(int a, long long b) { int ret = 1; while (b > 0) { if (b & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; b >>= 1; } return ret; } int modinv(int a) { return modpow(a, mod - 2); } typedef vector<ll> Vec; typedef vector<Vec> Mat; Vec mulMatVec(Mat a, Vec b) { int n = b.size(); Vec ret(n, 0); rep(i, 0, n) rep(j, 0, n) ret[i] = add(ret[i], mul(a[i][j], b[j])); return ret; } Mat mulMatMat(Mat a, Mat b) { int n = a.size(); Mat ret(n, Vec(n, 0)); rep(i, 0, n) rep(j, 0, n) rep(k, 0, n) ret[i][j] = add(ret[i][j], mul(a[i][k], b[k][j])); return ret; } Mat fastpow(Mat x, ll n) { Mat ret(x.size(), Vec(x.size(), 0)); rep(i, 0, x.size()) ret[i][i] = 1; while (0 < n) { if ((n % 2) == 0) { x = mulMatMat(x, x); n >>= 1; } else { ret = mulMatMat(ret, x); --n; } } return ret; } void printVec(Vec a) { cout << "[\t"; rep(i, 0, a.size()) cout << a[i] << "\t"; cout << "]" << endl; } void printMat(Mat a) { rep(i, 0, a.size()) printVec(a[i]); } ll query(ll N, ll _mod = 1000000007) { mod = _mod; Mat m = Mat(2, Vec(2, 0)); m[0][0] = 1; m[0][1] = 1; m[1][0] = 1; Vec v = Vec(2, 0); v[0] = 1; m = fastpow(m, N); v = mulMatVec(m, v); return v[1]; } }; /*--------------------------------------------------------------------------------------------------- ∧_∧ ∧_∧ (´<_` ) Welcome to My Coding Space! ( ´_ゝ`) / ⌒i / \ | | / / ̄ ̄ ̄ ̄/ | __(__ニつ/ _/ .| .|____ \/____/ (u ⊃ ---------------------------------------------------------------------------------------------------*/ ll N; //--------------------------------------------------------------------------------------------------- void _main() { cin >> N; Fibonacci f; mint fn = f.query(N); mint fn1 = f.query(N + 1); mint ans = fn * fn1; cout << ans << endl; }