結果

問題 No.718 行列のできるフィボナッチ数列道場 (1)
ユーザー 👑 はまやんはまやんはまやんはまやん
提出日時 2018-07-28 08:52:55
言語 C++14
(gcc 10.1.0 + boost 1.73.0)
結果
AC  
実行時間 3 ms / 2,000 ms
コード長 4,934 Byte
コンパイル時間 1,743 ms
使用メモリ 1,612 KB
最終ジャッジ日時 2020-07-31 07:11:46
このコードへのチャレンジ(β)

テストケース

テストケース表示
入力 結果 実行時間
使用メモリ
testcase_00 AC 2 ms
1,612 KB
testcase_01 AC 2 ms
1,608 KB
testcase_02 AC 2 ms
1,608 KB
testcase_03 AC 2 ms
1,612 KB
testcase_04 AC 2 ms
1,608 KB
testcase_05 AC 2 ms
1,604 KB
testcase_06 AC 3 ms
1,612 KB
testcase_07 AC 2 ms
1,608 KB
testcase_08 AC 3 ms
1,608 KB
testcase_09 AC 2 ms
1,612 KB
testcase_10 AC 2 ms
1,608 KB
testcase_11 AC 2 ms
1,612 KB
testcase_12 AC 2 ms
1,608 KB
testcase_13 AC 3 ms
1,612 KB
testcase_14 AC 2 ms
1,612 KB
testcase_15 AC 2 ms
1,612 KB
testcase_16 AC 2 ms
1,612 KB
testcase_17 AC 2 ms
1,612 KB
testcase_18 AC 2 ms
1,608 KB
testcase_19 AC 3 ms
1,608 KB
testcase_20 AC 2 ms
1,608 KB
testcase_21 AC 2 ms
1,608 KB
testcase_22 AC 2 ms
1,608 KB
権限があれば一括ダウンロードができます

ソースコード

diff #
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
template<int MOD> struct ModInt {
    static const int Mod = MOD; unsigned x; ModInt() : x(0) { }
    ModInt(signed sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    ModInt(signed long long sig) { x = sig < 0 ? sig % MOD + MOD : sig % MOD; }
    int get() const { return (int)x; }
    ModInt &operator+=(ModInt that) { if ((x += that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator-=(ModInt that) { if ((x += MOD - that.x) >= MOD) x -= MOD; return *this; }
    ModInt &operator*=(ModInt that) { x = (unsigned long long)x * that.x % MOD; return *this; }
    ModInt &operator/=(ModInt that) { return *this *= that.inverse(); }
    ModInt operator+(ModInt that) const { return ModInt(*this) += that; }
    ModInt operator-(ModInt that) const { return ModInt(*this) -= that; }
    ModInt operator*(ModInt that) const { return ModInt(*this) *= that; }
    ModInt operator/(ModInt that) const { return ModInt(*this) /= that; }
    ModInt inverse() const { long long a = x, b = MOD, u = 1, v = 0;
        while (b) { long long t = a / b; a -= t * b; std::swap(a, b); u -= t * v; std::swap(u, v); }
        return ModInt(u); }
    bool operator==(ModInt that) const { return x == that.x; }
    bool operator!=(ModInt that) const { return x != that.x; }
    ModInt operator-() const { ModInt t; t.x = x == 0 ? 0 : Mod - x; return t; }
};
template<int MOD> ostream& operator<<(ostream& st, const ModInt<MOD> a) { st << a.get(); return st; };
template<int MOD> ModInt<MOD> operator^(ModInt<MOD> a, unsigned long long k) {
    ModInt<MOD> r = 1; while (k) { if (k & 1) r *= a; a *= a; k >>= 1; } return r; }
typedef ModInt<1000000007> mint;
struct Fibonacci {
    ll mod = 1000000007;
    ll add(ll x, ll y) { return (x += y) >= mod ? x - mod : x; }
    template<class... T> ll add(ll x, T... y) { return add(x, add(y...)); }
    ll mul(ll x, ll y) {
        return x * y % mod;
    }
    template<class... T> int mul(int x, T... y) { return mul(x, mul(y...)); }
    int sub(int x, int y) { return add(x, mod - y); }
    int modpow(int a, long long b) {
        int ret = 1; while (b > 0) {
            if (b & 1) ret = 1LL * ret * a % mod; a = 1LL * a * a % mod; b >>= 1;
        } return ret;
    }
    int modinv(int a) { return modpow(a, mod - 2); }

    typedef vector<ll> Vec;
    typedef vector<Vec> Mat;
    Vec mulMatVec(Mat a, Vec b)
    {
        int n = b.size(); Vec ret(n, 0);
        rep(i, 0, n) rep(j, 0, n) ret[i] = add(ret[i], mul(a[i][j], b[j]));
        return ret;
    }
    Mat mulMatMat(Mat a, Mat b)
    {
        int n = a.size(); Mat ret(n, Vec(n, 0));
        rep(i, 0, n) rep(j, 0, n) rep(k, 0, n) ret[i][j] = add(ret[i][j], mul(a[i][k], b[k][j]));
        return ret;
    }
    Mat fastpow(Mat x, ll n)
    {
        Mat ret(x.size(), Vec(x.size(), 0));
        rep(i, 0, x.size()) ret[i][i] = 1;
        while (0 < n) { if ((n % 2) == 0) { x = mulMatMat(x, x); n >>= 1; } else { ret = mulMatMat(ret, x); --n; } }
        return ret;
    }
    void printVec(Vec a) { cout << "[\t"; rep(i, 0, a.size()) cout << a[i] << "\t"; cout << "]" << endl; }
    void printMat(Mat a) { rep(i, 0, a.size()) printVec(a[i]); }

    ll query(ll N, ll _mod = 1000000007) {
        mod = _mod;
        Mat m = Mat(2, Vec(2, 0));
        m[0][0] = 1;
        m[0][1] = 1;
        m[1][0] = 1;

        Vec v = Vec(2, 0);
        v[0] = 1;

        m = fastpow(m, N);
        v = mulMatVec(m, v);

        return v[1];
    }
};
/*---------------------------------------------------------------------------------------------------
            ∧_∧  
      ∧_∧  (´<_` )  Welcome to My Coding Space!
     ( ´_ゝ`) /  ⌒i     
    /   \     | |     
    /   / ̄ ̄ ̄ ̄/  |  
  __(__ニつ/     _/ .| .|____  
     \/____/ (u ⊃  
---------------------------------------------------------------------------------------------------*/




ll N;
//---------------------------------------------------------------------------------------------------
void _main() {
    cin >> N;

    Fibonacci f;
    mint fn = f.query(N);
    mint fn1 = f.query(N + 1);
    
    mint ans = fn * fn1;
    cout << ans << endl;
}
0