結果
問題 | No.719 Coprime |
ユーザー | Min_25 |
提出日時 | 2018-07-28 19:14:20 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 3 ms / 3,000 ms |
コード長 | 9,623 bytes |
コンパイル時間 | 1,708 ms |
コンパイル使用メモリ | 118,196 KB |
実行使用メモリ | 5,376 KB |
最終ジャッジ日時 | 2024-07-06 04:32:49 |
合計ジャッジ時間 | 3,149 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 2 ms
5,376 KB |
testcase_09 | AC | 3 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 2 ms
5,376 KB |
testcase_14 | AC | 2 ms
5,376 KB |
testcase_15 | AC | 2 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 2 ms
5,376 KB |
testcase_21 | AC | 2 ms
5,376 KB |
testcase_22 | AC | 2 ms
5,376 KB |
testcase_23 | AC | 2 ms
5,376 KB |
testcase_24 | AC | 2 ms
5,376 KB |
testcase_25 | AC | 2 ms
5,376 KB |
testcase_26 | AC | 2 ms
5,376 KB |
testcase_27 | AC | 2 ms
5,376 KB |
testcase_28 | AC | 2 ms
5,376 KB |
testcase_29 | AC | 2 ms
5,376 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 2 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 2 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 2 ms
5,376 KB |
testcase_40 | AC | 2 ms
5,376 KB |
testcase_41 | AC | 2 ms
5,376 KB |
testcase_42 | AC | 2 ms
5,376 KB |
testcase_43 | AC | 2 ms
5,376 KB |
testcase_44 | AC | 2 ms
5,376 KB |
testcase_45 | AC | 2 ms
5,376 KB |
testcase_46 | AC | 2 ms
5,376 KB |
testcase_47 | AC | 2 ms
5,376 KB |
testcase_48 | AC | 2 ms
5,376 KB |
testcase_49 | AC | 2 ms
5,376 KB |
testcase_50 | AC | 2 ms
5,376 KB |
testcase_51 | AC | 2 ms
5,376 KB |
testcase_52 | AC | 2 ms
5,376 KB |
testcase_53 | AC | 2 ms
5,376 KB |
testcase_54 | AC | 2 ms
5,376 KB |
testcase_55 | AC | 3 ms
5,376 KB |
testcase_56 | AC | 2 ms
5,376 KB |
testcase_57 | AC | 2 ms
5,376 KB |
testcase_58 | AC | 2 ms
5,376 KB |
testcase_59 | AC | 2 ms
5,376 KB |
testcase_60 | AC | 2 ms
5,376 KB |
ソースコード
#include <cstdio> #include <cassert> #include <cmath> #include <cstring> #include <iostream> #include <algorithm> #include <vector> #include <map> #include <set> #include <functional> #include <stack> #include <queue> #include <array> #include <tuple> #define getchar getchar_unlocked #define putchar putchar_unlocked #define _rep(_1, _2, _3, _4, name, ...) name #define rep2(i, n) rep3(i, 0, n) #define rep3(i, a, b) rep4(i, a, b, 1) #define rep4(i, a, b, c) for (int i = int(a); i < int(b); i += int(c)) #define rep(...) _rep(__VA_ARGS__, rep4, rep3, rep2, _)(__VA_ARGS__) using namespace std; using i64 = long long; using u8 = unsigned char; using u32 = unsigned; using u64 = unsigned long long; using f80 = long double; int get_int() { int c, n; while ((c = getchar()) < '0'); n = c - '0'; while ((c = getchar()) >= '0') n = n * 10 + (c - '0'); return n; } template < typename CapType, typename TotalCapType, typename CostType, typename TotalCostType > class CostScaling { private: static const int alpha = 8; // eps <- max(1, eps / alpha) using cap_t = CapType; using tcap_t = TotalCapType; using cost_t = CostType; // > max{|C|} * (2 * |V|) using tcost_t = TotalCostType; static constexpr cost_t Inf = (tcap_t(1) << (sizeof(tcap_t) * 8 - 2)) - 1; struct InputEdge { int from, to; cap_t b, c; cost_t cost; }; struct Edge { int to, rev; cap_t cap; cost_t cost; }; class Dinic { public: Dinic(int N, const vector<int>& ofs, vector<Edge>& edges, vector<tcap_t>& capacity) : N(N), ofs(ofs), edges(edges), capacity(capacity), last(N) {} bool succeeded() { // s -> u: capacity[u] // u -> t: capacity[u + N] tcap_t f = 0; for (int u = 0; u < N; ++u) f += capacity[u]; vector<int> que(N); while (f) { dist.assign(N, -1); int qh = 0, qt = 0, lv = N; for (int u = 0; u < N; ++u) if (capacity[u] > 0) que[qt++] = u, dist[u] = 0; for (; qh < qt; ) { int u = que[qh++]; if (lv == N && capacity[u + N] > 0) lv = dist[u]; if (dist[u] > lv) break; for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) { int v = edges[ei].to; if (edges[ei].cap > 0 && dist[v] == -1) { que[qt++] = v, dist[v] = dist[u] + 1; } } } if (lv == N) break; for (int u = 0; u < N; ++u) last[u] = ofs[u]; for (int u = 0; u < N; ++u) if (capacity[u] > 0) { auto df = block_flow(u, capacity[u]); f -= df, capacity[u] -= df; } } return f == 0; } private: tcap_t block_flow(int u, tcap_t f) { tcap_t ret = 0; if (capacity[u + N] > 0) { tcap_t df = min(f, capacity[u + N]); capacity[u + N] -= df; return df; } for (auto& ei = last[u]; ei < ofs[u + 1]; ++ei) { auto& e = edges[ei]; int v = e.to; if (e.cap == 0 || dist[v] <= dist[u]) continue; cap_t df = block_flow(v, min<cap_t>(e.cap, f)); if (df == 0) continue; e.cap -= df, edges[e.rev].cap += df; f -= df, ret += df; if (f == 0) break; } return ret; } int N; const vector<int>& ofs; vector<Edge>& edges; vector<tcap_t>& capacity; vector<int> last, dist; }; public: CostScaling(int N, int M=0) : N(N), capacity(2 * N) { if (M > 0) in.reserve(M); } void add_directed_edge(int u, int v, cap_t b, cap_t c, cost_t cost) { if (b > 0) capacity[v] += b, capacity[u + N] += b; else capacity[u] += -b, capacity[v + N] += -b; in.push_back({u, v, b, c, cost}); } pair<bool, tcost_t> minimum_cost_circulation() { construct(); if (!has_feasible_circulation()) return {false, 0}; const int cost_multiplier = 2 << __lg(N); // should be > |V| cost_t eps = 0; for (auto& e : edges) e.cost *= cost_multiplier, eps = max(eps, e.cost); while (eps > 1) refine(eps = max<cost_t>(1, eps / alpha)); tcost_t ret = initial_cost; for (auto& e : edges) ret -= (e.cost / cost_multiplier) * e.cap; return {true, ret / 2}; } private: void refine(const cost_t eps) { auto cost_p = [&] (int u, const Edge& e) { return e.cost + potential[u] - potential[e.to]; }; for (int u = 0; u < N; ++u) for (int i = ofs[u]; i < ofs[u + 1]; ++i) { auto& e = edges[i]; if (cost_p(u, e) < 0) edges[e.rev].cap += e.cap, e.cap = 0; } vector<tcap_t> excess(initial_excess); for (auto& e : edges) excess[e.to] -= e.cap; vector<int> stack; stack.reserve(N); for (int u = 0; u < N; ++u) if (excess[u] > 0) stack.push_back(u); auto residue = [&] (const Edge& e) -> cap_t { return e.cap; }; auto push = [&] (int u, Edge& e, cap_t df) { e.cap -= df; edges[e.rev].cap += df; excess[e.to] += df; excess[u] -= df; if (excess[e.to] > 0 && excess[e.to] <= df) { stack.push_back(e.to); } }; auto relabel = [&] (int u, cost_t delta) { potential[u] -= delta + eps; }; auto relabel_in_advance = [&] (int u) { if (excess[u] != 0) return false; auto delta = Inf; for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) { auto& e = edges[ei]; if (residue(e) == 0) continue; if (cost_p(u, e) < 0) return false; else delta = min<tcost_t>(delta, cost_p(u, e)); } relabel(u, delta); return true; }; auto discharge = [&] (int u) { auto delta = Inf; for (int ei = ofs[u]; ei < ofs[u + 1]; ++ei) { auto& e = edges[ei]; if (residue(e) == 0) continue; if (cost_p(u, e) < 0) { if (relabel_in_advance(e.to)) { --ei; continue; // modify ei (!) } cap_t df = min<tcap_t>(excess[u], residue(e)); push(u, e, df); if (!excess[u]) return; } else delta = min<tcost_t>(delta, cost_p(u, e)); } relabel(u, delta); stack.push_back(u); }; while (!stack.empty()) { auto u = stack.back(); stack.pop_back(); discharge(u); } } void construct() { ofs.assign(N + 1, 0); edges.resize(2 * in.size()); initial_excess.assign(N, 0); initial_cost = 0; potential.assign(N, 0); for (auto& e : in) ofs[e.from + 1]++, ofs[e.to + 1]++; for (int i = 1; i <= N; ++i) ofs[i] += ofs[i - 1]; for (auto& e : in) { initial_excess[e.to] += e.c; initial_excess[e.from] += -e.b; initial_cost += tcost_t(e.cost) * (e.c + e.b); edges[ofs[e.from]++] = {e.to, ofs[e.to], e.c - e.b, e.cost}; edges[ofs[e.to]++] = {e.from, ofs[e.from] - 1, 0, -e.cost}; } for (int i = N; i > 0; --i) ofs[i] = ofs[i - 1]; ofs[0] = 0; } bool has_feasible_circulation() { return Dinic(N, ofs, edges, capacity).succeeded(); } private: int N; vector<InputEdge> in; vector<tcap_t> capacity; vector<int> ofs; vector<Edge> edges; tcost_t initial_cost; vector<tcap_t> initial_excess; vector<tcost_t> potential; }; // cap, total_cap, cost * (2 * |V|), total_cost using MCC = CostScaling<int, int64_t, int64_t, int64_t>; // using MCC = CostScaling<int, int, int, int>; vector<int> prime_sieve(int N) { if (N <= 1) return vector<int>(); const int sieve_size = 32 << 10; static u8 block[sieve_size]; const int v = sqrt(N), vv = sqrt(v); vector<bool> is_prime(v + 1, 1); vector<pair<int, int>> sprimes; rep(i, 2, vv + 1) if (is_prime[i]) rep(j, i * i, v + 1, i) is_prime[j] = 0; rep(i, 3, v + 1, 2) if (is_prime[i]) sprimes.emplace_back(i, i * i / 2); const int rsize = N >= 60194 ? N / (log(N) - 1.1) : max(1., N / (log(N) - 1.11)) + 1; vector<int> primes(1, 2); primes.resize(rsize); int psize = 1; auto* pblock = block - 1; for (int beg = 1; beg < (N + 1) / 2; beg += sieve_size, pblock -= sieve_size) { int end = min(beg + sieve_size, (N + 1) / 2); fill(block, block + sieve_size, 1); rep(i, sprimes.size()) { int p, next; tie(p, next) = sprimes[i]; if (p * p > N) break; for (; next < end; next += p) pblock[next] = 0; sprimes[i].second = next; }; rep(i, beg, end) if (pblock[i]) primes[psize++] = 2 * i + 1; } assert(psize <= int(primes.size())); primes.resize(psize); return primes; } void solve() { /* 10 ** 6: 37717171222 ? 10 ** 7: 3207771163478 ? 10 ** 8: 279332542770588 ? */ int N; while (~scanf("%d", &N)) { vector<int> primes = prime_sieve(N); const int pcnt = primes.size(); vector<int> max_pows(pcnt); i64 ans = 0; rep(i, primes.size()) { int p = primes[i]; i64 q = p; while (q * p <= N) q *= p; max_pows[i] = q; ans += q; } const int v = sqrt(N); int sqi = upper_bound(primes.begin(), primes.end(), v) - primes.begin(); auto mcc = MCC(pcnt + 2); rep(i, sqi) { i64 p = primes[i]; rep(j, sqi, pcnt) { i64 q = primes[j]; if (p * q > N) break; i64 t = p * q; while (t * p <= N) t *= p; i64 cost = t - max_pows[i] - max_pows[j]; if (cost > 0) mcc.add_directed_edge(i, j, 0, 1, (int) -cost); } } rep(i, sqi) mcc.add_directed_edge(pcnt, i, 0, 1, 0); rep(i, sqi, pcnt) mcc.add_directed_edge(i, pcnt + 1, 0, 1, 0); mcc.add_directed_edge(pcnt + 1, pcnt, 0, sqi, 0); auto ans2 = mcc.minimum_cost_circulation(); printf("%lld\n", ans - ans2.second); } } int main() { clock_t beg = clock(); solve(); clock_t end = clock(); fprintf(stderr, "%.3f sec\n", double(end - beg) / CLOCKS_PER_SEC); return 0; }