結果

問題 No.195 フィボナッチ数列の理解(2)
ユーザー Yang33
提出日時 2018-08-01 16:20:54
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 3 ms / 5,000 ms
コード長 3,596 bytes
コンパイル時間 1,759 ms
コンパイル使用メモリ 177,172 KB
実行使用メモリ 6,944 KB
最終ジャッジ日時 2024-09-19 16:46:09
合計ジャッジ時間 2,559 ms
ジャッジサーバーID
(参考情報)
judge1 / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
sample AC * 3
other AC * 22
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using VS = vector<string>; using LL = long long;
using VI = vector<int>; using VVI = vector<VI>;
using PII = pair<int, int>; using PLL = pair<LL, LL>;
using VL = vector<LL>; using VVL = vector<VL>;
#define ALL(a) begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
#define debug(x) cerr << #x << ": " << x << endl
const int INF = 1e9; const LL LINF = 1e16;
const LL MOD = 1000000007; const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 }; int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };
/* ----- 2018/07/31 Problem: yukicoder 195 / Link: http://yukicoder.me/problems/no/195 ----- */
/* ------------
yuki
A,B(A,B)
A,B
(A,B)kFA,B(k)
- FA,B(1)=A
- FA,B(2)=B
- k≥3FA,B(k)=FA,B(k−1)+FA,B(k−2)
yukiX,Y,Z
(A,B)X,Y,Z(FA,B(i)=X,FA,B(j)=Y,FA,B(k)=Zi,j,k)A,B
(A,B)AAB
(A,B)-1
---------- */
/* ----------
-------- */
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
LL X, Y, Z; cin >> X >> Y >> Z;
set<LL>Se({ X,Y,Z });
VL Xs(ALL(Se));
VL FibA(50, 0);
VL FibB(50, 0);
FibA[0] = 1, FibA[2] = 1;
FibB[1] = 1, FibB[2] = 1;
FOR(i, 3, 50) {
FibA[i] = FibA[i - 1] + FibA[i - 2];
FibB[i] = FibB[i - 1] + FibB[i - 2];
}
PLL ans = PLL(LINF, LINF);
if (SZ(Xs) == 1) {
FOR(i, 1, 50) {
LL ret = Xs.front() - FibA[i];
if (ret <= 0)break;
if (ret%FibB[i] == 0) {
ans.first = 1;
ans.second = min(ans.second, ret / FibB[i]);
}
}
}
else {
FOR(i, 0, 50) {
FOR(j, 0, 50) {
if (i == j)continue;
FOR(k, 0, 50) {
LL D = FibB[i] * FibA[j] - FibB[j] * FibA[i];
LL E = FibA[j] * Xs[0] - FibA[i] * Xs[1];
if (D < 0)D = -D, E = -E;
if (E <= 0 || E%D != 0)continue;
LL B = E / D;
LL A = 0;
if (FibA[i] != 0) {
A = Xs[0] - FibB[i] * B;
if (A <= 0 || A%FibA[i])continue;
A /= FibA[i];
}
else {
A = Xs[1] - FibB[j] * B;
if (A <= 0 || A%FibA[j])continue;
A /= FibA[j];
}
if (SZ(Xs) == 3 && FibA[k] * A + FibB[k] * B == Xs[2]) {
ans = min(ans, PLL(A, B));
}
else if (SZ(Xs) != 3) {
ans = min(ans, PLL(A, B));
}
}
}
}
}
if (ans.first == LINF) {
cout << -1 << endl;
}
else {
cout << ans.first << " " << ans.second << endl;
}
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0