結果
問題 | No.215 素数サイコロと合成数サイコロ (3-Hard) |
ユーザー | Min_25 |
提出日時 | 2018-08-04 03:04:49 |
言語 | Python3 (3.12.2 + numpy 1.26.4 + scipy 1.12.0) |
結果 |
RE
(最新)
AC
(最初)
|
実行時間 | - |
コード長 | 1,766 bytes |
コンパイル時間 | 75 ms |
コンパイル使用メモリ | 12,800 KB |
実行使用メモリ | 44,352 KB |
最終ジャッジ日時 | 2024-09-19 17:42:26 |
合計ジャッジ時間 | 3,252 ms |
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
ソースコード
import numpy as np from numpy.fft import fft, ifft def poly_mul_mod(f, g, mod, shift=15): def conv(f): ff = np.zeros(fft_size, dtype=np.complex128) ff[:len(f)] = ((f & mask) + (f >> shift) * 1j) / 2.0 ff = fft(ff) ffrc = np.concatenate((ff[0:1], ff[-1:0:-1])).conj() return ff, ffrc mask = (1 << shift) - 1 s = len(f) + len(g) - 1 fft_size = 1 << ((2 * s - 1).bit_length() - 1) ff, ffrc = conv(f) fg, fgrc = conv(g) ffr, ffi = ff + ffrc, ff - ffrc fgr, fgi = fg + fgrc, fg - fgrc f01 = ifft(ffr * (fgr + fgi) + ffi * fgr)[:s] lo = f01.real.round().astype(np.int64) mid = f01.imag.round().astype(np.int64) hi = ifft(-ffi * fgi).real.round().astype(np.int64)[:s] ret = (lo + ((mid % mod) << shift) + ((hi % mod) << (2 * shift))) % mod return ret def nth(n, numer, denom, mod): while n > 0: sdenom = denom.copy() sdenom[1::2] = mod - denom[1::2] numer = poly_mul_mod(numer, sdenom, mod)[n & 1::2] denom = poly_mul_mod(denom, sdenom, mod)[::2] n >>= 1 return numer[0] def solve(): import sys Ps = np.array([2, 3, 5, 7, 11, 13], dtype=np.int) Cs = np.array([4, 6, 8, 9, 10, 12], dtype=np.int) mod = 10 ** 9 + 7 def gene(ds, T): dp = np.zeros((T + 1, ds[-1] * T + 1), dtype=np.int) dp[0][0] = 1 o = ds[0] for di in range(6): d = ds[di] for t in range(T): dp[t+1][d+o*t:d*(t+1)+1] = \ (dp[t+1][d+o*t:d*(t+1)+1] + dp[t][o*t:d*t+1]) % mod return dp[T][:] for line in sys.stdin: N, P, C = map(int, line.split()) denom = poly_mul_mod(gene(Ps, P), gene(Cs, C), mod) denom = (mod - denom) % mod denom[0] = 1 numer = np.cumsum(denom, dtype=np.int64) % mod print(nth(N + len(denom) - 1, numer, denom, mod)) solve()