結果
| 問題 |
No.702 中央値を求めよ LIMITED
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-08-05 15:03:34 |
| 言語 | Rust (1.83.0 + proconio) |
| 結果 |
AC
|
| 実行時間 | 1,216 ms / 5,000 ms |
| コード長 | 9,512 bytes |
| コンパイル時間 | 12,332 ms |
| コンパイル使用メモリ | 386,244 KB |
| 実行使用メモリ | 21,504 KB |
| 最終ジャッジ日時 | 2024-11-22 22:35:03 |
| 合計ジャッジ時間 | 46,613 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 25 |
ソースコード
#[doc = " https://github.com/hatoo/competitive-rust-snippets"]
#[allow(unused_imports)]
use std::cmp::{max, min, Ordering};
#[allow(unused_imports)]
use std::collections::{BTreeMap, BTreeSet, BinaryHeap, HashMap, HashSet, VecDeque};
#[allow(unused_imports)]
use std::io::{stdin, stdout, BufWriter, Write};
#[allow(unused_imports)]
use std::iter::FromIterator;
mod util {
use std::fmt::Debug;
use std::io::{stdin, stdout, BufWriter, StdoutLock};
use std::str::FromStr;
#[allow(dead_code)]
pub fn line() -> String {
let mut line: String = String::new();
stdin().read_line(&mut line).unwrap();
line.trim().to_string()
}
#[allow(dead_code)]
pub fn chars() -> Vec<char> {
line().chars().collect()
}
#[allow(dead_code)]
pub fn gets<T: FromStr>() -> Vec<T>
where
<T as FromStr>::Err: Debug,
{
let mut line: String = String::new();
stdin().read_line(&mut line).unwrap();
line.split_whitespace()
.map(|t| t.parse().unwrap())
.collect()
}
#[allow(dead_code)]
pub fn with_bufwriter<F: FnOnce(BufWriter<StdoutLock>) -> ()>(f: F) {
let out = stdout();
let writer = BufWriter::new(out.lock());
f(writer)
}
}
#[allow(unused_macros)]
macro_rules ! get { ( $ t : ty ) => { { let mut line : String = String :: new ( ) ; stdin ( ) . read_line ( & mut line ) . unwrap ( ) ; line . trim ( ) . parse ::<$ t > ( ) . unwrap ( ) } } ; ( $ ( $ t : ty ) ,* ) => { { let mut line : String = String :: new ( ) ; stdin ( ) . read_line ( & mut line ) . unwrap ( ) ; let mut iter = line . split_whitespace ( ) ; ( $ ( iter . next ( ) . unwrap ( ) . parse ::<$ t > ( ) . unwrap ( ) , ) * ) } } ; ( $ t : ty ; $ n : expr ) => { ( 0 ..$ n ) . map ( | _ | get ! ( $ t ) ) . collect ::< Vec < _ >> ( ) } ; ( $ ( $ t : ty ) ,*; $ n : expr ) => { ( 0 ..$ n ) . map ( | _ | get ! ( $ ( $ t ) ,* ) ) . collect ::< Vec < _ >> ( ) } ; ( $ t : ty ;; ) => { { let mut line : String = String :: new ( ) ; stdin ( ) . read_line ( & mut line ) . unwrap ( ) ; line . split_whitespace ( ) . map ( | t | t . parse ::<$ t > ( ) . unwrap ( ) ) . collect ::< Vec < _ >> ( ) } } ; ( $ t : ty ;; $ n : expr ) => { ( 0 ..$ n ) . map ( | _ | get ! ( $ t ;; ) ) . collect ::< Vec < _ >> ( ) } ; }
#[allow(unused_macros)]
macro_rules ! debug { ( $ ( $ a : expr ) ,* ) => { eprintln ! ( concat ! ( $ ( stringify ! ( $ a ) , " = {:?}, " ) ,* ) , $ ( $ a ) ,* ) ; } }
const BIG_STACK_SIZE: bool = false;
#[allow(dead_code)]
fn main() {
use std::thread;
if BIG_STACK_SIZE {
thread::Builder::new()
.stack_size(64 * 1024 * 1024)
.name("solve".into())
.spawn(solve)
.unwrap()
.join()
.unwrap();
} else {
solve();
}
}
struct XorShift {
x: u32,
y: u32,
z: u32,
w: u32,
}
impl XorShift {
fn new(x: u32) -> XorShift {
XorShift {
x,
y: 1,
z: 2,
w: 3,
}
}
fn next(&mut self) -> u32 {
let t = self.x ^ (self.x << 11);
self.x = self.y;
self.y = self.z;
self.z = self.w;
self.w = (self.w ^ (self.w >> 19)) ^ (t ^ (t >> 8));
self.w
}
}
#[doc = " IntervalHeap"]
#[derive(Clone, Debug)]
struct IntervalHeap<T: Ord + Eq> {
data: Vec<T>,
}
impl<T: Ord + Eq> IntervalHeap<T> {
#[allow(dead_code)]
fn new() -> IntervalHeap<T> {
IntervalHeap { data: Vec::new() }
}
#[allow(dead_code)]
fn with_capacity(n: usize) -> IntervalHeap<T> {
IntervalHeap {
data: Vec::with_capacity(n),
}
}
#[allow(dead_code)]
#[inline]
fn len(&self) -> usize {
self.data.len()
}
#[allow(dead_code)]
#[inline]
fn is_empty(&self) -> bool {
self.data.is_empty()
}
#[allow(dead_code)]
#[inline]
fn push(&mut self, x: T) {
let i = self.data.len();
self.data.push(x);
self.up(i);
}
#[allow(dead_code)]
#[inline]
fn peek_min(&self) -> Option<&T> {
self.data.first()
}
#[allow(dead_code)]
#[inline]
fn peek_max(&self) -> Option<&T> {
if self.data.len() > 1 {
self.data.get(1)
} else {
self.data.first()
}
}
#[allow(dead_code)]
#[inline]
fn pop_min(&mut self) -> Option<T> {
if self.data.len() == 1 {
return self.data.pop();
}
if self.data.is_empty() {
return None;
}
let len = self.data.len();
self.data.swap(0, len - 1);
let res = self.data.pop();
self.down(0);
res
}
#[allow(dead_code)]
#[inline]
fn pop_max(&mut self) -> Option<T> {
if self.data.len() <= 2 {
return self.data.pop();
}
if self.data.is_empty() {
return None;
}
let len = self.data.len();
self.data.swap(1, len - 1);
let res = self.data.pop();
self.down(1);
res
}
#[allow(dead_code)]
#[inline]
fn parent(i: usize) -> usize {
((i >> 1) - 1) & !1
}
#[allow(dead_code)]
#[inline]
fn down(&mut self, i: usize) {
let mut i = i;
let n = self.data.len();
if i & 1 == 0 {
while (i << 1) + 2 < n {
let mut k = (i << 1) + 2;
if k + 2 < n
&& unsafe { self.data.get_unchecked(k + 2) }
< unsafe { self.data.get_unchecked(k) }
{
k = k + 2;
}
if unsafe { self.data.get_unchecked(i) } > unsafe { self.data.get_unchecked(k) } {
self.data.swap(i, k);
i = k;
if i + 1 < self.data.len()
&& unsafe { self.data.get_unchecked(i) }
> unsafe { self.data.get_unchecked(i + 1) }
{
self.data.swap(i, i + 1);
}
} else {
break;
}
}
} else {
while (i << 1) + 1 < n {
let mut k = (i << 1) + 1;
if k + 2 < n
&& unsafe { self.data.get_unchecked(k + 2) }
> unsafe { self.data.get_unchecked(k) }
{
k = k + 2;
}
if unsafe { self.data.get_unchecked(i) } < unsafe { self.data.get_unchecked(k) } {
self.data.swap(i, k);
i = k;
if i > 0
&& unsafe { self.data.get_unchecked(i) }
< unsafe { self.data.get_unchecked(i - 1) }
{
self.data.swap(i, i - 1);
}
} else {
break;
}
}
}
}
#[allow(dead_code)]
#[inline]
fn up(&mut self, i: usize) {
let mut i = i;
if i & 1 == 1
&& unsafe { self.data.get_unchecked(i) } < unsafe { self.data.get_unchecked(i - 1) }
{
self.data.swap(i, i - 1);
i -= 1;
}
while i > 1
&& unsafe { self.data.get_unchecked(i) }
< unsafe { self.data.get_unchecked(Self::parent(i)) }
{
let p = Self::parent(i);
self.data.swap(i, p);
i = p;
}
while i > 1
&& unsafe { self.data.get_unchecked(i) }
> unsafe { self.data.get_unchecked(Self::parent(i) + 1) }
{
let p = Self::parent(i) + 1;
self.data.swap(i, p);
i = p;
}
}
#[allow(dead_code)]
#[inline]
fn clear(&mut self) {
self.data.clear();
}
}
#[derive(Clone, Debug)]
struct LimitedIntervalHeap<T: Ord + Eq> {
heap: IntervalHeap<T>,
limit: usize,
}
impl<T: Ord + Eq> LimitedIntervalHeap<T> {
#[allow(dead_code)]
fn new(limit: usize) -> LimitedIntervalHeap<T> {
LimitedIntervalHeap {
heap: IntervalHeap::with_capacity(limit),
limit: limit,
}
}
#[allow(dead_code)]
#[inline]
fn is_empty(&self) -> bool {
self.heap.is_empty()
}
#[allow(dead_code)]
#[inline]
fn push(&mut self, x: T) -> Option<T> {
if self.heap.len() < self.limit {
self.heap.push(x);
None
} else {
if self.heap.data[0] < x {
let mut x = x;
std::mem::swap(&mut x, &mut self.heap.data[0]);
if self.heap.len() >= 2 && self.heap.data[0] > self.heap.data[1] {
self.heap.data.swap(0, 1);
}
self.heap.down(0);
Some(x)
} else {
Some(x)
}
}
}
#[allow(dead_code)]
#[inline]
fn pop(&mut self) -> Option<T> {
self.heap.pop_max()
}
#[allow(dead_code)]
#[inline]
fn clear(&mut self) {
self.heap.clear();
}
}
fn solve() {
let seed = get!(u32);
let mut rng = XorShift::new(seed);
let mut heap = LimitedIntervalHeap::new(5000001);
for _ in 0..10000001 {
let v = rng.next();
heap.push(v);
}
println!("{}", heap.heap.pop_min().unwrap());
}