結果

問題 No.230 Splarraay スプラレェーイ
ユーザー HaarHaar
提出日時 2018-09-03 16:05:23
言語 Haskell
(9.6.2)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 5,256 bytes
コンパイル時間 3,332 ms
コンパイル使用メモリ 144,480 KB
最終ジャッジ日時 2023-07-29 17:28:33
合計ジャッジ時間 5,022 ms
ジャッジサーバーID
(参考情報)
judge12 / judge14
このコードへのチャレンジ(β)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
Loaded package environment from /home/judge/.ghc/x86_64-linux-9.6.1/environments/default
[1 of 2] Compiling Main             ( Main.hs, Main.o )

Main.hs:13:1: error:
    Could not load module ‘Control.Monad.Primitive’
    It is a member of the hidden package ‘primitive-0.8.0.0’.
    You can run ‘:set -package primitive’ to expose it.
    (Note: this unloads all the modules in the current scope.)
    Use -v (or `:set -v` in ghci) to see a list of the files searched for.
   |
13 | import Control.Monad.Primitive
   | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

ソースコード

diff #

{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE MultiWayIf #-}

import Control.Monad
import Control.Monad.ST
import Control.Monad.State
import Control.Monad.Primitive
import Control.Applicative
import Control.Arrow
import Data.List
import Data.Array
import Data.Array.IO
import Data.Array.ST
import Data.IORef
import Data.STRef
import Data.Maybe
import Data.Bits
import Data.Ord
import Data.Ratio
import Data.Int
import Data.Char
import qualified Data.ByteString.Char8 as BS
import qualified Data.Set as Set
import qualified Data.Vector as V
import qualified Data.Vector.Mutable as VM
import qualified Data.Vector.Unboxed as VU
import qualified Data.Vector.Unboxed.Mutable as VUM
import qualified Data.Vector.Generic as VG
import qualified Data.Vector.Generic.Mutable as VGM
import Data.Tuple
import Data.Function
import Text.Printf
import Debug.Trace
import Numeric

modifyArray arr i f = readArray arr i >>= \x -> writeArray arr i (f x)

listToTuple2 [a,b] = (a,b)
listToTuple3 [a,b,c] = (a,b,c)
listToTuple4 [a,b,c,d] = (a,b,c,d)
listToTuple5 [a,b,c,d,e] = (a,b,c,d,e)

readIntBS = fst . fromJust . BS.readInt

for = flip map

infixr 1 ?
(?) :: Bool -> (a,a) -> a
(?) b t = (if b then fst else snd) t

main :: IO ()
main = do
  n <- readLn :: IO Int
  q <- readLn :: IO Int
  qs <- replicateM q $ map readIntBS . BS.words <$> BS.getLine :: IO [[Int]]

  let
    add (a,b) (c,d) = (a+c,b+d)
    inf = -1 :: Int
    f x@(xa,xb) y = if xa == inf then y else x
    g (a,b) n = (a*n,b*n)

  seg <- newRangeSegmentTree n (0,0) add (inf,inf) f g :: IO (IOURangeSegmentTree (Int,Int))
  let ((tr,_,_),(ltr,_,_),_,_) = seg

  (xa,xb) <- (`execStateT` (0,0)) $ do
    forM_ qs $ \[x,l,r] -> do
      case x of
        0 -> (lift $ findRangeSegmentTree seg l (r+1)) >>=
             \(a,b) -> if
               | a > b -> modify $ first (+a)
               | a < b -> modify $ second (+b)
               | a == b -> return ()
        1 -> lift $ modifyRangeSegmentTree seg l (r+1) (const (1,0))
        2 -> lift $ modifyRangeSegmentTree seg l (r+1) (const (0,1))
        

    --print =<< show <$> findRangeSegmentTree seg 0 n
    --print =<< VU.toList <$> VU.freeze tr
    --print =<< VU.freeze ltr

  (ya,yb) <- findRangeSegmentTree seg 0 n

  printf "%d %d\n" (xa+ya) (xb+yb)



{-- 範囲更新・範囲取得のセグメント木--}
type MRangeSegmentTree v s a = ((v s a, a, (a -> a -> a)), (v s a, a, (a -> a -> a)), Int, (a -> Int -> a))
-- 範囲取得用の(セグメント木,単位元,二項演算)、範囲更新用の(遅延セグメント木,単位元,二項演算)
type STRangeSegmentTree s a = MRangeSegmentTree VM.MVector s a
type IORangeSegmentTree a = STRangeSegmentTree RealWorld a
type STURangeSegmentTree s a = MRangeSegmentTree VUM.MVector s a
type IOURangeSegmentTree a = STURangeSegmentTree RealWorld a


newRangeSegmentTree :: (Applicative m, PrimMonad m, VGM.MVector v a) => Int -> a -> (a -> a -> a) -> a -> (a -> a -> a) -> (a -> Int -> a) -> m (MRangeSegmentTree v (PrimState m) a)
newRangeSegmentTree n e1 f1 e2 f2 h = do
  tree1 <- VGM.replicate m e1
  tree2 <- VGM.replicate m e2
  return ((tree1,e1,f1),(tree2,e2,f2), m, h)
  where m = 2 * (2 ^ (ceiling $ logBase 2 (fromIntegral n))) - 1

modifyRangeSegmentTree :: (Applicative m, Eq a, PrimMonad m, VGM.MVector v a) => MRangeSegmentTree v (PrimState m) a -> Int -> Int -> (a -> a) -> m ()
modifyRangeSegmentTree ((tree,e1,f1),(lazy,e2,f2),size,h) x y g = do
  void $ aux 0 0 n
  where
    n = size `div` 2 + 1
    aux i l r = do
      propag i (r-l)
      if
        | r <= x || y <= l -> VGM.read tree i
        | x <= l && r <= y -> g <$> VGM.read lazy i >>= (\a -> VGM.write lazy i a >> VGM.read tree i >>= \b ->  return ( (h a (r-l))))
        | otherwise -> f1 <$> aux (i*2+1) l ((l+r)`div`2) <*> aux (i*2+2) ((l+r)`div`2) r >>= (\a -> VGM.write tree i a >> return a)

    propag i len = do
      a <- VGM.read lazy i
      when (a /= e2) $ do
        when (i<n-1) $ do
          VGM.write lazy (i*2+1) =<< f2 a <$> VGM.read lazy (i*2+1)
          VGM.write lazy (i*2+2) =<< f2 a <$> VGM.read lazy (i*2+2)
        VGM.write tree i =<< (\a b -> (f2 (h b len) a)) <$> VGM.read tree i <*> VGM.read lazy i
        VGM.write lazy i e2

findRangeSegmentTree :: (Applicative m, Eq a, PrimMonad m, VGM.MVector v a) => MRangeSegmentTree v (PrimState m) a -> Int -> Int -> m a
findRangeSegmentTree ((tree1,e1,f1),(tree2,e2,f2),size,h) x y = do
  aux 0 0 n
  where
    n = size `div` 2 + 1
    aux i l r = do
      propag i (r-l)
      if
        | r <= x || y <= l -> return e1
        | x <= l && r <= y -> VGM.read tree1 i
        | otherwise -> f1 <$> aux (i*2+1) l ((l+r)`div`2) <*> aux (i*2+2) ((l+r)`div`2) r
        
    propag i len = do
      a <- VGM.read tree2 i
      when (a /= e2) $ do
        when (i<n-1) $ do
          VGM.write tree2 (i*2+1) =<< f2 a <$> VGM.read tree2 (i*2+1)
          VGM.write tree2 (i*2+2) =<< f2 a <$> VGM.read tree2 (i*2+2)
        VGM.write tree1 i =<< (\a b -> (f2 (h b len) a)) <$> VGM.read tree1 i <*> VGM.read tree2 i
        VGM.write tree2 i e2



0