結果
問題 | No.376 立方体のN等分 (2) |
ユーザー | はまやんはまやん |
提出日時 | 2018-09-04 14:49:30 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 5,796 bytes |
コンパイル時間 | 2,176 ms |
コンパイル使用メモリ | 182,496 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-10-13 10:21:34 |
合計ジャッジ時間 | 3,363 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | WA | - |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | WA | - |
testcase_03 | WA | - |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | AC | 2 ms
5,248 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | WA | - |
testcase_13 | AC | 2 ms
5,248 KB |
testcase_14 | AC | 2 ms
5,248 KB |
testcase_15 | AC | 2 ms
5,248 KB |
testcase_16 | WA | - |
testcase_17 | WA | - |
testcase_18 | AC | 2 ms
5,248 KB |
testcase_19 | WA | - |
testcase_20 | AC | 2 ms
5,248 KB |
testcase_21 | WA | - |
testcase_22 | AC | 2 ms
5,248 KB |
testcase_23 | WA | - |
testcase_24 | WA | - |
testcase_25 | AC | 2 ms
5,248 KB |
testcase_26 | WA | - |
testcase_27 | AC | 2 ms
5,248 KB |
testcase_28 | AC | 2 ms
5,248 KB |
testcase_29 | AC | 2 ms
5,248 KB |
testcase_30 | AC | 2 ms
5,248 KB |
testcase_31 | AC | 5 ms
5,248 KB |
testcase_32 | AC | 4 ms
5,248 KB |
testcase_33 | AC | 6 ms
5,248 KB |
testcase_34 | AC | 4 ms
5,248 KB |
testcase_35 | WA | - |
testcase_36 | AC | 2 ms
5,248 KB |
testcase_37 | AC | 2 ms
5,248 KB |
testcase_38 | AC | 2 ms
5,248 KB |
testcase_39 | WA | - |
ソースコード
#include<bits/stdc++.h> #define rep(i,a,b) for(int i=a;i<b;i++) #define rrep(i,a,b) for(int i=a;i>=b;i--) #define fore(i,a) for(auto &i:a) #define all(x) (x).begin(),(x).end() #pragma GCC optimize ("-O3") using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); } typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60; template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; } template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; } //--------------------------------------------------------------------------------------------------- #define MAXL (50000>>5)+1 #define GET(x) (mark[x>>5]>>(x&31)&1) #define SET(x) (mark[x>>5] |= 1<<(x&31)) int mark[MAXL]; int P[50000], Pt = 0; void init() { register int i, j, k; SET(1); int n = 46340; for (i = 2; i <= n; i++) { if (!GET(i)) { for (k = n / i, j = i * k; k >= i; k--, j -= i) SET(j); P[Pt++] = i; } } } long long mul(unsigned long long a, unsigned long long b, unsigned long long mod) { long long ret = 0; for (a %= mod, b %= mod; b != 0; b >>= 1, a <<= 1, a = a >= mod ? a - mod : a) { if (b & 1) { ret += a; if (ret >= mod) ret -= mod; } } return ret; } void exgcd(long long x, long long y, long long &g, long long &a, long long &b) { if (y == 0) g = x, a = 1, b = 0; else exgcd(y, x%y, g, b, a), b -= (x / y) * a; } long long llgcd(long long x, long long y) { if (x < 0) x = -x; if (y < 0) y = -y; if (!x || !y) return x + y; long long t; while (x%y) t = x, x = y, y = t % y; return y; } long long inverse(long long x, long long p) { long long g, b, r; exgcd(x, p, g, r, b); if (g < 0) r = -r; return (r%p + p) % p; } long long mpow(long long x, long long y, long long mod) { // mod < 2^32 long long ret = 1; while (y) { if (y & 1) ret = (ret * x) % mod; y >>= 1, x = (x * x) % mod; } return ret % mod; } long long mpow2(long long x, long long y, long long mod) { long long ret = 1; while (y) { if (y & 1) ret = mul(ret, x, mod); y >>= 1, x = mul(x, x, mod); } return ret % mod; } int isPrime(long long p) { // implements by miller-babin if (p < 2 || !(p & 1)) return 0; if (p == 2) return 1; long long q = p - 1, a, t; int k = 0, b = 0; while (!(q & 1)) q >>= 1, k++; for (int it = 0; it < 2; it++) { a = rand() % (p - 4) + 2; t = mpow2(a, q, p); b = (t == 1) || (t == p - 1); for (int i = 1; i < k && !b; i++) { t = mul(t, t, p); if (t == p - 1) b = 1; } if (b == 0) return 0; } return 1; } long long pollard_rho(long long n, long long c) { long long x = 2, y = 2, i = 1, k = 2, d; while (true) { x = (mul(x, x, n) + c); if (x >= n) x -= n; d = llgcd(x - y, n); if (d > 1) return d; if (++i == k) y = x, k <<= 1; } return n; } void factorize(int n, vector<long long> &f) { for (int i = 0; i < Pt && P[i] * P[i] <= n; i++) { if (n%P[i] == 0) { while (n%P[i] == 0) f.push_back(P[i]), n /= P[i]; } } if (n != 1) f.push_back(n); } void llfactorize(long long n, vector<long long> &f) { if (n == 1) return; if (n < 1e+9) { factorize(n, f); return; } if (isPrime(n)) { f.push_back(n); return; } long long d = n; for (int i = 2; d == n; i++) d = pollard_rho(n, i); llfactorize(d, f); llfactorize(n / d, f); } /*--------------------------------------------------------------------------------------------------- ∧_∧ ∧_∧ (´<_` ) Welcome to My Coding Space! ( ´_ゝ`) / ⌒i / \ | | / / ̄ ̄ ̄ ̄/ | __(__ニつ/ _/ .| .|____ \/____/ (u ⊃ ---------------------------------------------------------------------------------------------------*/ //--------------------------------------------------------------------------------------------------- vector<ll> enumdiv(ll x) { vector<ll> v, res; llfactorize(x, v); map<ll, int> cnt; fore(i, v) cnt[i]++; res.push_back(1); vector<ll> buf; buf.push_back(1); fore(pa, cnt) { ll p = pa.first; int c = pa.second; vector<ll> nxt; fore(y, buf) { ll yy = y; rep(i, 1, c + 1) { yy *= p; res.push_back(yy); nxt.push_back(yy); } } fore(y, nxt) buf.push_back(y); } sort(all(res)); return res; } ll N; //--------------------------------------------------------------------------------------------------- void _main() { cin >> N; ll tmin = infl, tmax = -infl; auto dv = enumdiv(N); /*fore(a, dv) { ll rest = N / a; auto dv2 = enumdiv(rest); fore(b, dv2) { ll c = rest / b; chmin(tmin, a + b + c - 3); chmax(tmax, a + b + c - 3); } }*/ int n = dv.size(); rep(i, 0, n) rep(j, 0, n) { ll a = dv[i], b = dv[j]; if (N % a == 0) if ((N / a) % b == 0) { ll c = N / a / b; chmin(tmin, a + b + c - 3); chmax(tmax, a + b + c - 3); } } printf("%lld %lld\n", tmin, tmax); }