結果
| 問題 |
No.376 立方体のN等分 (2)
|
| コンテスト | |
| ユーザー |
はまやんはまやん
|
| 提出日時 | 2018-09-04 14:51:50 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,010 bytes |
| コンパイル時間 | 2,122 ms |
| コンパイル使用メモリ | 183,600 KB |
| 実行使用メモリ | 6,824 KB |
| 最終ジャッジ日時 | 2024-10-13 10:27:11 |
| 合計ジャッジ時間 | 3,344 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 24 WA * 14 |
ソースコード
#include<bits/stdc++.h>
#define rep(i,a,b) for(int i=a;i<b;i++)
#define rrep(i,a,b) for(int i=a;i>=b;i--)
#define fore(i,a) for(auto &i:a)
#define all(x) (x).begin(),(x).end()
#pragma GCC optimize ("-O3")
using namespace std; void _main(); int main() { cin.tie(0); ios::sync_with_stdio(false); _main(); }
typedef long long ll; const int inf = INT_MAX / 2; const ll infl = 1LL << 60;
template<class T>bool chmax(T &a, const T &b) { if (a<b) { a = b; return 1; } return 0; }
template<class T>bool chmin(T &a, const T &b) { if (b<a) { a = b; return 1; } return 0; }
//---------------------------------------------------------------------------------------------------
#define MAXL (50000>>5)+1
#define GET(x) (mark[x>>5]>>(x&31)&1)
#define SET(x) (mark[x>>5] |= 1<<(x&31))
int mark[MAXL];
int P[50000], Pt = 0;
void init() {
register int i, j, k;
SET(1);
int n = 46340;
for (i = 2; i <= n; i++) {
if (!GET(i)) {
for (k = n / i, j = i * k; k >= i; k--, j -= i)
SET(j);
P[Pt++] = i;
}
}
}
long long mul(unsigned long long a, unsigned long long b, unsigned long long mod) {
long long ret = 0;
for (a %= mod, b %= mod; b != 0; b >>= 1, a <<= 1, a = a >= mod ? a - mod : a) {
if (b & 1) {
ret += a;
if (ret >= mod) ret -= mod;
}
}
return ret;
}
void exgcd(long long x, long long y, long long &g, long long &a, long long &b) {
if (y == 0)
g = x, a = 1, b = 0;
else
exgcd(y, x%y, g, b, a), b -= (x / y) * a;
}
long long llgcd(long long x, long long y) {
if (x < 0) x = -x;
if (y < 0) y = -y;
if (!x || !y) return x + y;
long long t;
while (x%y)
t = x, x = y, y = t % y;
return y;
}
long long inverse(long long x, long long p) {
long long g, b, r;
exgcd(x, p, g, r, b);
if (g < 0) r = -r;
return (r%p + p) % p;
}
long long mpow(long long x, long long y, long long mod) { // mod < 2^32
long long ret = 1;
while (y) {
if (y & 1)
ret = (ret * x) % mod;
y >>= 1, x = (x * x) % mod;
}
return ret % mod;
}
long long mpow2(long long x, long long y, long long mod) {
long long ret = 1;
while (y) {
if (y & 1)
ret = mul(ret, x, mod);
y >>= 1, x = mul(x, x, mod);
}
return ret % mod;
}
int isPrime(long long p) { // implements by miller-babin
if (p < 2 || !(p & 1)) return 0;
if (p == 2) return 1;
long long q = p - 1, a, t;
int k = 0, b = 0;
while (!(q & 1)) q >>= 1, k++;
for (int it = 0; it < 2; it++) {
a = rand() % (p - 4) + 2;
t = mpow2(a, q, p);
b = (t == 1) || (t == p - 1);
for (int i = 1; i < k && !b; i++) {
t = mul(t, t, p);
if (t == p - 1)
b = 1;
}
if (b == 0)
return 0;
}
return 1;
}
long long pollard_rho(long long n, long long c) {
long long x = 2, y = 2, i = 1, k = 2, d;
while (true) {
x = (mul(x, x, n) + c);
if (x >= n) x -= n;
d = llgcd(x - y, n);
if (d > 1) return d;
if (++i == k) y = x, k <<= 1;
}
return n;
}
void factorize(int n, vector<long long> &f) {
for (int i = 0; i < Pt && P[i] * P[i] <= n; i++) {
if (n%P[i] == 0) {
while (n%P[i] == 0)
f.push_back(P[i]), n /= P[i];
}
}
if (n != 1) f.push_back(n);
}
void llfactorize(long long n, vector<long long> &f) {
if (n == 1)
return;
if (n < 1e+9) {
factorize(n, f);
return;
}
if (isPrime(n)) {
f.push_back(n);
return;
}
long long d = n;
for (int i = 2; d == n; i++)
d = pollard_rho(n, i);
llfactorize(d, f);
llfactorize(n / d, f);
}
/*---------------------------------------------------------------------------------------------------
∧_∧
∧_∧ (´<_` ) Welcome to My Coding Space!
( ´_ゝ`) / ⌒i
/ \ | |
/ / ̄ ̄ ̄ ̄/ |
__(__ニつ/ _/ .| .|____
\/____/ (u ⊃
---------------------------------------------------------------------------------------------------*/
//---------------------------------------------------------------------------------------------------
vector<ll> enumdiv(ll x) {
if (x < 1000000000) {
vector<ll> S;
for (ll i = 1; i*i <= x; i++) if (x%i == 0) { S.push_back(i); if (i*i != x) S.push_back(x / i); }
sort(S.begin(), S.end());
return S;
}
vector<ll> v, res;
llfactorize(x, v);
map<ll, int> cnt;
fore(i, v) cnt[i]++;
res.push_back(1);
vector<ll> buf; buf.push_back(1);
fore(pa, cnt) {
ll p = pa.first;
int c = pa.second;
vector<ll> nxt;
fore(y, buf) {
ll yy = y;
rep(i, 1, c + 1) {
yy *= p;
res.push_back(yy);
nxt.push_back(yy);
}
}
fore(y, nxt) buf.push_back(y);
}
sort(all(res));
return res;
}
ll N;
//---------------------------------------------------------------------------------------------------
void _main() {
cin >> N;
ll tmin = infl, tmax = -infl;
auto dv = enumdiv(N);
/*fore(a, dv) {
ll rest = N / a;
auto dv2 = enumdiv(rest);
fore(b, dv2) {
ll c = rest / b;
chmin(tmin, a + b + c - 3);
chmax(tmax, a + b + c - 3);
}
}*/
int n = dv.size();
rep(i, 0, n) rep(j, 0, n) {
ll a = dv[i], b = dv[j];
if (N % a == 0) if ((N / a) % b == 0) {
ll c = N / a / b;
chmin(tmin, a + b + c - 3);
chmax(tmax, a + b + c - 3);
}
}
printf("%lld %lld\n", tmin, tmax);
}
はまやんはまやん