結果
| 問題 |
No.214 素数サイコロと合成数サイコロ (3-Medium)
|
| コンテスト | |
| ユーザー |
Min_25
|
| 提出日時 | 2015-05-23 05:50:02 |
| 言語 | Python3 (3.13.1 + numpy 2.2.1 + scipy 1.14.1) |
| 結果 |
AC
|
| 実行時間 | 1,203 ms / 3,000 ms |
| コード長 | 14,585 bytes |
| コンパイル時間 | 128 ms |
| コンパイル使用メモリ | 14,464 KB |
| 実行使用メモリ | 13,184 KB |
| 最終ジャッジ日時 | 2024-07-06 06:02:39 |
| 合計ジャッジ時間 | 5,192 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 3 |
ソースコード
def _poly_mul(poly1, poly2):
ret = [0] * (len(poly1) + len(poly2) - 1)
for i in range(len(poly2)):
if poly2[i] == 0:
continue
coef = poly2[i]
for j in range(len(poly1)):
ret[i + j] += coef * poly1[j]
return ret
def poly_mul_karatsuba(poly1, poly2, threshold=16):
size = len(poly1)
if size >= threshold:
size_l = (size + 1) // 2
size_h = size - size_l
p1 = poly_mul_karatsuba(poly1[:size_h], poly2[:size_h], threshold)
p2 = poly_mul_karatsuba(poly1[size_h:], poly2[size_h:], threshold)
q1 = poly1[size_h:]
q2 = poly2[size_h:]
ofs = size_l - size_h
for i in range(size_h):
q1[ofs + i] += poly1[i]
q2[ofs + i] += poly2[i]
p3 = poly_mul_karatsuba(q1, q2, threshold)
ret = p1
ret.extend([0])
ret.extend(p2)
for i in range(size_l * 2 - 1):
p3[i] -= ret[2 * size_h + i]
for i in range(size_h * 2 - 1):
p3[ofs * 2 + i] -= ret[i]
ofs = 2 * size - 3 * size_l
for i in range(size_l * 2 - 1):
ret[ofs + i] += p3[i]
return ret
else:
return _poly_mul(poly1, poly2)
def _pack(pack, shamt):
size = len(pack)
while size > 1:
npack = []
for i in range(0, size - 1, 2):
npack.append(pack[i] | (pack[i+1] << shamt))
if size & 1:
npack.append(pack[-1])
pack = npack
size = (size + 1) >> 1
shamt <<= 1
return pack[0]
def _pack1(seq, shamt):
M = _pack(seq, shamt)
size = len(seq) * 2 - 1
block_size = 1 << ilog2(size - 1)
return M, shamt * block_size
def _pack2(seq1, seq2, shamt):
M1 = _pack(seq1, shamt)
M2 = _pack(seq2, shamt)
size = len(seq1) + len(seq2) - 1
block_size = 1 << ilog2(size - 1)
return M1, M2, shamt * block_size
def pack_sequence(seq):
max_bits = max([c.bit_length() for c in seq])
size = len(seq)
shamt = (max_bits * 2 + size.bit_length())
return _pack1(seq, shamt)
def pack_sequence_mod(seq, mod):
size = len(seq)
max_value = (mod - 1) ** 2 * size
shamt = max_value.bit_length()
return _pack1(seq, shamt)
def pack_sequence2(seq1, seq2):
max_bits_1 = max([c.bit_length() for c in seq1])
max_bits_2 = max([c.bit_length() for c in seq2])
size = min(len(seq1), len(seq2))
shamt = (max_bits_1 + max_bits_2 + size.bit_length())
return _pack2(seq1, seq2, shamt)
def pack_sequence2_mod(seq1, seq2, mod):
size = min(len(seq1), len(seq2))
max_value = (mod - 1) ** 2 * size
shamt = max_value.bit_length()
return _pack2(seq1, seq2, shamt)
def unpack_sequence(M, size, shamt):
needed_sizes = []
s = size
while s > 1:
needed_sizes.append(s)
s = (s + 1) >> 1
ret = [M]
for needed_size in needed_sizes[::-1]:
mask = (1 << shamt) - 1
nret = []
for c in ret:
nret.append(c & mask)
nret.append(c >> shamt)
ret = nret[:needed_size]
shamt >>= 1
return ret
def poly_mul_builtin(poly1, poly2):
M1, M2, shamt = pack_sequence2(poly1, poly2)
size = len(poly1) + len(poly2) - 1
return unpack_sequence(M1 * M2, size, shamt)
def poly_mul(poly1, poly2, threshold=16, use_builtin=False):
t = type(poly1[0])
if use_builtin and len(poly1) >= threshold and (t == int or t == long):
return poly_mul_builtin(poly1, poly2)
else:
if len(poly1) == len(poly2):
return poly_mul_karatsuba(poly1, poly2, threshold)
else:
return _poly_mul(poly1, poly2)
def poly_square_builtin(poly):
M, shamt = pack_sequence(poly)
size = len(poly) * 2 - 1
return unpack_sequence(M ** 2, size, shamt)
def _poly_square(poly):
size = len(poly)
ret = [0] * (size * 2 - 1)
for i in range(size):
ret[2 * i] = poly[i] * poly[i]
for i in range(size):
coef = 2 * poly[i]
for j in range(i + 1, size):
ret[i + j] += coef * poly[j]
return ret
def poly_square_karatsuba(poly, threshold=16):
size = len(poly)
if size >= threshold:
size_l = (size + 1) // 2
size_h = size - size_l
p1 = poly_square_karatsuba(poly[:size_h], threshold)
p2 = poly_square_karatsuba(poly[size_h:], threshold)
S = poly[size_h:]
ofs = size_l - size_h
for i in range(size_h):
S[ofs + i] += poly[i]
p3 = poly_square_karatsuba(S, threshold)
ret = p1
ret.extend([0])
ret.extend(p2)
for i in range(size_l * 2 - 1):
p3[i] -= ret[2 * size_h + i]
for i in range(size_h * 2 - 1):
p3[ofs * 2 + i] -= ret[i]
ofs = 2 * size - 3 * size_l
for i in range(size_l * 2 - 1):
ret[ofs + i] += p3[i]
return ret
else:
return _poly_square(poly)
def poly_square(poly, threshold=16, use_builtin=False):
t = type(poly[0])
if use_builtin and len(poly) >= threshold and (t == int or t == long):
return poly_square_builtin(poly)
else:
if len(poly) >= threshold:
return poly_square_karatsuba(poly)
else:
return _poly_square(poly)
def poly_pow(poly, e, threshold=16):
ret = [1]
if e == 0:
return ret
mask = 1 << (e.bit_length() - 1)
ret = [1]
while mask:
if e & mask:
ret = poly_mul(ret, poly, threshold, False)
mask >>= 1
if not mask:
break
ret = poly_square(ret, threshold, False)
return ret
def poly_inverse(poly, size):
assert(poly[0] == 1)
degs = []
deg = size - 1
while deg:
degs.append(deg)
deg >>= 1
poly2 = poly[:]
if len(poly2) < size:
poly2.extend([0] * (size - len(poly2)))
inv = [1]
for t in degs[::-1]:
added = t + 1 - len(inv)
tmp = poly_mul(poly2[:t + 1], inv)[len(inv):]
tmp = poly_mul(tmp[:added], inv[:added])
inv.extend([-v for v in tmp[:added]])
return inv
def poly_mul_mod_ntt(poly1, poly2, mod):
p1, p2, p3 = [880803841, 897581057, 998244353]
z1, z2, z3 = [273508579, 872686320, 15311432]
s1 = len(poly1)
s2 = len(poly2)
ntt_size = 2 << ilog2(max(s1, s2) * 2 - 1)
size = s1 + s2 - 1
A = poly1[:] + [0] * (ntt_size - s1)
B = poly2[:] + [0] * (ntt_size - s2)
A1 = _ntt_convolve(A[:], B[:], size, p1, z1)
A2 = _ntt_convolve(A[:], B[:], size, p2, z2)
A3 = _ntt_convolve(A[:], B[:], size, p3, z3)
inv = inv_mod(p1, p2)
for i in range(size):
k = (A2[i] - A1[i]) * inv % p2
A1[i] += k * p1
p12 = p1 * p2
inv = inv_mod(p12, p3)
for i in range(size):
k = (A3[i] - A1[i]) % p3 * inv % p3
A1[i] = (A1[i] + k * (p12 % mod)) % mod
return A1[:size]
def poly_square_mod_ntt(poly1, mod):
p1, p2, p3 = [880803841, 897581057, 998244353]
z1, z2, z3 = [273508579, 872686320, 15311432]
s1 = len(poly1)
ntt_size = 2 << ilog2(s1 * 2 - 1)
size = 2 * s1 - 1
A = poly1[:] + [0] * (ntt_size - s1)
A1 = _ntt_convolve_self(A[:], size, p1, z1)
A2 = _ntt_convolve_self(A[:], size, p2, z2)
A3 = _ntt_convolve_self(A[:], size, p3, z3)
inv = inv_mod(p1, p2)
for i in range(size):
k = (A2[i] - A1[i]) * inv % p2
A1[i] += k * p1
p12 = p1 * p2
inv = inv_mod(p12, p3)
for i in range(size):
k = (A3[i] - A1[i]) % p3 * inv % p3
A1[i] = (A1[i] + k * (p12 % mod)) % mod
return A1[:size]
def poly_mul_mod_builtin(poly1, poly2, mod):
M1, M2, shamt = pack_sequence2_mod(poly1, poly2, mod)
size = len(poly1) + len(poly2) - 1
seq = unpack_sequence(M1 * M2, size, shamt)
return [int(x % mod) for x in seq]
def poly_square_mod_builtin(poly, mod):
M, shamt = pack_sequence_mod(poly, mod)
size = len(poly) * 2 - 1
seq = unpack_sequence(M ** 2, size, shamt)
return [int(x % mod) for x in seq]
def poly_add_mod(poly1, ofs1, poly2, ofs2, size, mod):
diff = ofs2 - ofs1
for i in range(ofs1, ofs1 + size):
poly1[i] = (poly1[i] + poly2[i + diff]) % mod
def poly_sub_mod(poly1, ofs1, poly2, ofs2, size, mod):
diff = ofs2 - ofs1
for i in range(ofs1, ofs1 + size):
poly1[i] = (poly1[i] - poly2[i + diff]) % mod
def poly_mul_mod_karatsuba(poly1, poly2, mod, threshold=128):
size = len(poly1)
if size >= threshold:
size_l = (size + 1) // 2
size_h = size - size_l
p1 = poly_mul_mod_karatsuba(poly1[:size_h], poly2[:size_h], mod, threshold)
p2 = poly_mul_mod_karatsuba(poly1[size_h:], poly2[size_h:], mod, threshold)
q1 = poly1[size_h:]
q2 = poly2[size_h:]
ofs = size_l - size_h
poly_add_mod(q1, ofs, poly1, 0, size_h, mod)
poly_add_mod(q2, ofs, poly2, 0, size_h, mod)
p3 = poly_mul_mod_karatsuba(q1, q2, mod, threshold)
ret = p1
ret.extend([0])
ret.extend(p2)
poly_sub_mod(p3, 0, ret, 2 * size_h, size_l * 2 - 1, mod)
poly_sub_mod(p3, ofs * 2, ret, 0, size_h * 2 - 1, mod)
ofs = 2 * size - 3 * size_l
poly_add_mod(ret, ofs, p3, 0, size_l * 2 - 1, mod)
return ret
else:
return _poly_mul_mod(poly1, poly2, mod)
def _poly_mul_mod(poly1, poly2, mod):
ret = [0] * (len(poly1) + len(poly2) - 1)
for i in range(len(poly2)):
if poly2[i] == 0:
continue
coef = poly2[i]
for j in range(len(poly1)):
ret[i + j] = (ret[i + j] + coef * poly1[j]) % mod
return ret
def poly_mul_mod(poly1, poly2, mod, threshold=128, ntt_threshold=65536):
size1 = len(poly1)
size2 = len(poly2)
if size1 >= ntt_threshold and size2 >= ntt_threshold and mod <= 2 * 10 ** 9:
return poly_mul_mod_ntt(poly1, poly2, mod)
else:
if size1 <= threshold and size2 <= threshold:
return _poly_mul_mod(poly1, poly2, mod)
else:
return poly_mul_mod_builtin(poly1, poly2, mod)
def _poly_square_mod(poly, mod):
size = len(poly)
ret = [0] * (size * 2 - 1)
for i in range(size):
ret[2 * i] = poly[i] * poly[i] % mod
for i in range(size):
coef = 2 * poly[i]
for j in range(i + 1, size):
ret[i + j] = (ret[i + j] + coef * poly[j]) % mod
return ret
def poly_square_mod_karatsuba(poly, mod, threshold=64):
size = len(poly)
if size >= threshold:
size_l = (size + 1) // 2
size_h = size - size_l
p1 = poly_square_mod_karatsuba(poly[:size_h], mod, threshold)
p2 = poly_square_mod_karatsuba(poly[size_h:], mod, threshold)
S = poly[size_h:]
ofs = size_l - size_h
poly_add_mod(S, ofs, poly, 0, size_h, mod)
p3 = poly_square_mod_karatsuba(S, mod, threshold)
ret = p1
ret.extend([0])
ret.extend(p2)
poly_sub_mod(p3, 0, ret, 2 * size_h, size_l * 2 - 1, mod)
poly_sub_mod(p3, ofs * 2, ret, 0, size_h * 2 - 1, mod)
ofs = 2 * size - 3 * size_l
poly_add_mod(ret, ofs, p3, 0, size_l * 2 - 1, mod)
return ret
else:
return _poly_square_mod(poly, mod)
def poly_square_mod(poly, mod, threshold=128, k_threshold=64, ntt_threshold=65536):
size = len(poly)
if size >= ntt_threshold and mod <= 2 * 10 ** 9:
return poly_square_mod_ntt(poly, mod)
elif size >= threshold:
return poly_square_mod_builtin(poly, mod)
elif size >= k_threshold:
return poly_square_mod_karatsuba(poly, mod)
else:
return _poly_square_mod(poly, mod)
def poly_pow_mod(poly, e, mod):
ret = [1]
if e == 0:
return ret
mask = 1 << (e.bit_length() - 1)
ret = [1]
while mask:
if e & mask:
ret = poly_mul_mod(ret, poly, mod)
mask >>= 1
if not mask:
break
ret = poly_square_mod(ret, mod)
return ret
def _poly_rem_mod(poly1, poly2, mod):
if len(poly1) < len(poly2):
return poly1[:]
ret = poly1[:]
dif = len(poly1) - len(poly2) + 1
assert(poly2[0] == 1)
for i in range(dif):
if ret[i] == 0:
continue
coef = ret[i] % mod
for j in range(1, len(poly2)):
ret[i + j] = (ret[i + j] - coef * poly2[j]) % mod
ret[i] = coef
return ret[dif:]
def poly_inverse_mod(poly, size, mod):
assert(poly[0] == 1)
degs = []
deg = size - 1
while deg:
degs.append(deg)
deg >>= 1
poly2 = poly[:]
if len(poly2) < size:
poly2.extend([0] * (size - len(poly2)))
inv = [1]
for t in degs[::-1]:
added = t + 1 - len(inv)
tmp = poly_mul_mod(poly2[:t + 1], inv, mod)[len(inv):]
tmp = poly_mul_mod(tmp[:added], inv[:added], mod)
inv.extend([-v % mod for v in tmp[:added]])
return inv
def poly_div_mod(poly1, poly2, mod, inverse=[]):
assert(len(poly1) >= len(poly2))
assert(poly2[0] == 1)
needed_size = len(poly1) - len(poly2) + 1
if len(inverse) == 0:
inverse = poly_inverse_mod(poly2, needed_size, mod)
assert(len(inverse) >= needed_size)
ret = poly_mul_mod(poly1[:needed_size], inverse[:needed_size], mod)
return ret[:needed_size]
def poly_rem_mod(poly1, poly2, mod, inverse=[]):
size1 = len(poly1)
size2 = len(poly2)
if size1 < size2:
return poly1[:]
needed_size = size1 - size2 + 1
if len(poly2) < 10 or needed_size < 10:
return _poly_rem_mod(poly1, poly2, mod)
if len(inverse) == 0:
inverse = poly_inverse_mod(poly2, needed_size, mod)
poly_q = poly_div_mod(poly1, poly2, mod, inverse)
poly_q2 = poly_mul_mod(poly_q, poly2, mod)
return [(poly1[i] - poly_q2[i]) % mod for i in range(size1 - size2 + 1, size1)]
def poly_power_rem_mod(e, poly_divisor, mod, threshold=32):
"""
Return x^e % poly_divisor (modulo mod)
assume:
- deg(poly_divisor) > 0
- mod > 1
"""
if e == 0:
return [1]
ret = [1]
mask = 1 << (e.bit_length() - 1)
inverse = []
if len(poly_divisor) >= threshold:
inverse = poly_inverse_mod(poly_divisor, len(poly_divisor), mod)
while mask:
if e & mask:
ret.append(0)
mask >>= 1
if not mask:
break
ret = poly_square_mod(ret, mod)
ret = poly_rem_mod(ret, poly_divisor, mod, inverse)
if len(ret) >= len(poly_divisor):
ret = poly_rem_mod(ret, poly_divisor, mod, inverse)
return ret
def pat(dice, P, mod):
dp = [[0] * (P * dice[-1] + 1) for _ in range(P + 1)]
dp[0][0] = 1
for di, d in enumerate(dice):
for i in range(P):
for k in range(dice[0] * i, dice[di] * i + 1):
if dp[i][k]:
dp[i + 1][k + d] = (dp[i + 1][k + d] + dp[i][k]) % mod
return dp[-1]
def ilog2(n):
if n <= 0:
return 0
else:
return n.bit_length() - 1
import sys
def solve():
N, P, C = map(int, sys.stdin.readline().split())
Ps = [2, 3, 5, 7, 11, 13]
Cs = [4, 6, 8, 9, 10, 12]
mod = 10 ** 9 + 7
Ps = pat(Ps, P, mod)
Cs = pat(Cs, C, mod)
poly = poly_mul_mod(Ps, Cs, mod)
poly[0] = 1
for i in range(1, len(poly)):
poly[i] = -poly[i] % mod
Max = 13 * P + 12 * C
E = max(0, N - Max)
inv = poly_inverse_mod(poly, Max, mod)
sums = [0] * len(poly)
for i in range(1, len(poly)):
sums[i] = (sums[i-1] + -poly[i]) % mod
poly_rem = poly_power_rem_mod(E, poly, mod)
ans = 0
for e in range(E, N):
total = 0
for i in range(len(poly_rem)):
total = (total + poly_rem[-1 - i] * inv[i]) % mod
ans = (ans + total * (sums[Max] - sums[N - e - 1])) % mod
poly_rem.extend([0])
poly_rem = poly_rem_mod(poly_rem, poly, mod)
print(ans)
solve()
Min_25