結果

問題 No.730 アルファベットパネル
ユーザー バイト
提出日時 2018-09-07 21:32:45
言語 Java
(openjdk 23)
結果
CE  
(最新)
AC  
(最初)
実行時間 -
コード長 40,433 bytes
コンパイル時間 3,245 ms
コンパイル使用メモリ 98,608 KB
最終ジャッジ日時 2024-11-14 20:37:43
合計ジャッジ時間 3,733 ms
ジャッジサーバーID
(参考情報)
judge5 / judge2
このコードへのチャレンジ
(要ログイン)
コンパイルエラー時のメッセージ・ソースコードは、提出者また管理者しか表示できないようにしております。(リジャッジ後のコンパイルエラーは公開されます)
ただし、clay言語の場合は開発者のデバッグのため、公開されます。

コンパイルメッセージ
Main.java:3: error: package javax.xml.bind does not exist
import javax.xml.bind.SchemaOutputResolver;
                     ^
1 error

ソースコード

diff #
プレゼンテーションモードにする

package com.company;
import javax.xml.bind.SchemaOutputResolver;
import java.io.*;
import static java.lang.Math.*;
import static java.lang.Math.min;
import static java.util.Arrays.*;
import java.lang.reflect.Array;
import java.util.*;
import java.util.stream.*;
/**
* @author baito
*/
@SuppressWarnings("unchecked")
public class Main {
static boolean DEBUG = true;
static StringBuilder sb = new StringBuilder();
static int INF = 1234567890;
static int MINF = -1234567890;
static long LINF = 123456789123456789L;
static long MLINF = -123456789123456789L;
static long MOD = 1000000007;
static double EPS = 1e-10;
static int[] y4 = {0, 1, 0, -1};
static int[] x4 = {1, 0, -1, 0};
static int[] y8 = {0, 1, 0, -1, -1, 1, 1, -1};
static int[] x8 = {1, 0, -1, 0, 1, -1, 1, -1};
static ArrayList<Long> Fa;
static boolean[] isPrime;
static ArrayList<Integer> primes;
static char[][] ban;
static long maxRes = MLINF;
static long minRes = LINF;
static int N;
static long[] A;
public static void solve() throws Exception {
//long
char[] s = nca();
N = s.length;
int[] cou = new int[30];
for (int i = 0; i < N; i++) {
cou[s[i] - 'A']++;
}
if (max(cou) < 2) {
System.out.println("YES");
} else {
System.out.println("NO");
}
}
public static boolean calc(long va) {
//
int v = (int) va;
return true;
}
//
static int mgr(long ok, long ng) {
//int ok = 0; //
//int ng = N; //
while (Math.abs(ok - ng) > 1) {
long mid;
if (ok < 0 && ng > 0 || ok > 0 && ng < 0) mid = (ok + ng) / 2;
else mid = ok + (ng - ok) / 2;
if (calc(mid)) {
ok = mid;
} else {
ng = mid;
}
}
if (calc(ok)) return (int) ok;
else return -1;
}
static ArrayList<Integer> divisors(int n) {
ArrayList<Integer> res = new ArrayList<>();
for (int i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
res.add(i);
if (i != n / i) res.add(n / i);
}
}
return res;
}
static ArrayList<Long> divisors(long n) {
ArrayList<Long> res = new ArrayList<>();
for (long i = 1; i <= Math.sqrt(n); i++) {
if (n % i == 0) {
res.add(i);
if (i != n / i) res.add(n / i);
}
}
return res;
}
static ArrayList<Integer> factorization(int n) {
if (primes == null) setPrimes();
ArrayList<Integer> fact = new ArrayList<>();
for (int p : primes) {
if (n % p == 0) fact.add(p);
while (n % p == 0) n /= p;
if (n == 1) break;
}
if (n != 1) fact.add(n);
return fact;
}
boolean equal(double a, double b) {
return a == 0 ? abs(b) < EPS : abs((a - b) / a) < EPS;
}
public static void matPrint(long[][] a) {
for (int hi = 0; hi < a.length; hi++) {
for (int wi = 0; wi < a[0].length; wi++) {
System.out.print(a[hi][wi] + " ");
}
System.out.println("");
}
}
//rl l * r
public static long[][] matMul(long[][] l, long[][] r) throws IOException {
int lh = l.length;
int lw = l[0].length;
int rh = r.length;
int rw = r[0].length;
//lwrh,
if (lw != rh) throw new IOException();
long[][] res = new long[lh][rw];
for (int i = 0; i < lh; i++) {
for (int j = 0; j < rw; j++) {
for (int k = 0; k < lw; k++) {
res[i][j] = modSum(res[i][j], modMul(l[i][k], r[k][j]));
}
}
}
return res;
}
public static long[][] matPow(long[][] a, int n) throws IOException {
int h = a.length;
int w = a[0].length;
if (h != w) throw new IOException();
long[][] res = new long[h][h];
for (int i = 0; i < h; i++) {
res[i][i] = 1;
}
long[][] pow = a.clone();
while (n > 0) {
if (bget(n, 0)) res = matMul(pow, res);
pow = matMul(pow, pow);
n >>= 1;
}
return res;
}
public static void chMax(long v) {
maxRes = Math.max(maxRes, v);
}
public static void chMin(long v) {
minRes = Math.min(minRes, v);
}
//便
static int[] inverse(int[] a) {
int[] res = new int[a.length];
for (int i = 0; i < a.length; i++)
res[a[i]] = i;
return res;
}
//2
static int[][] packE(int n, int[] from, int[] to) {
int[][] g = new int[n][];
int[] p = new int[n];
for (int f : from)
p[f]++;
for (int t : to)
p[t]++;
for (int i = 0; i < n; i++)
g[i] = new int[p[i]];
for (int i = 0; i < from.length; i++) {
g[from[i]][--p[from[i]]] = to[i];
g[to[i]][--p[to[i]]] = from[i];
}
return g;
}
public static void print(char[][] a) {
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[0].length; j++) {
System.out.print(a[i][j]);
}
System.out.println("");
}
}
public static <T> void print(ArrayList<T> a) {
for (T t : a) {
System.out.println(t);
}
}
public static void print(int[] a) {
for (int i = 0; i < a.length; i++)
System.out.println(a[i]);
}
public static void print(long[] a) {
for (int i = 0; i < a.length; i++)
System.out.println(a[i]);
}
public static void print(int[][] a) {
for (int i = 0; i < a.length; i++) {
for (int j = 0; j < a[0].length; j++) {
System.out.print(a[i][j]);
}
System.out.println("");
}
}
//bit
public static boolean bget(BitSet bit, int keta) {
return bit.nextSetBit(keta) == keta;
}
public static boolean bget(long bit, int keta) {
return ((bit >> keta) & 1) == 1;
}
public static int restoreHashA(long key) {
return (int) (key >> 32);
}
public static int restoreHashB(long key) {
return (int) (key & -1);
}
//
public static long getHashKey(int a, int b) {
return (long) a << 32 | b;
}
//--------------------------------
//a/b
public static long ceil(long a, long b) {
return (a % b == 0) ? a / b : a / b + 1;
}
public static long sqrt(long v) {
long res = (long) Math.sqrt(v);
while (res * res > v) res--;
return res;
}
static long ncr2(int a, int b) {
if (b == 0) return 1;
else if (a < b) return 0;
long res = 1;
for (int i = 0; i < b; i++) {
res *= a - i;
res /= i + 1;
}
return res;
}
static double[][] PER_DP;
static double ncrPer(int n, int r) {
if (n < r) return 0;
if (PER_DP == null) {
PER_DP = new double[5001][5001];
PER_DP[0][0] = 1;
for (int ni = 0; ni < PER_DP.length - 1; ni++) {
for (int ri = 0; ri < ni + 1; ri++) {
PER_DP[ni + 1][ri] += PER_DP[ni][ri] / 2;
PER_DP[ni + 1][ri + 1] += PER_DP[ni][ri] / 2;
}
}
}
return PER_DP[n][r];
}
public static int mod(int a, int m) {
return a >= 0 ? a % m : (int) (a + ceil(-a, m) * m) % m;
}
static long modNcr(int n, int r) {
if (n < 0 || r < 0 || n < r) return 0;
if (Fa == null || Fa.size() <= n) factorial(n);
long result = Fa.get(n);
result = modMul(result, modInv(Fa.get(n - r)));
result = modMul(result, modInv(Fa.get(r)));
return result;
}
public static long modSum(long... lar) {
long res = 0;
for (long l : lar)
res = (res + l % MOD) % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modDiff(long a, long b) {
long res = a % MOD - b % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modMul(long... lar) {
long res = 1;
for (long l : lar)
res = (res * l % MOD) % MOD;
if (res < 0) res += MOD;
res %= MOD;
return res;
}
public static long modDiv(long... lar) {
long res = lar[0] % MOD;
for (int i = 1; i < lar.length; i++) {
res = modMul(res, modInv(lar[i]));
}
return res;
}
static long modInv(long n) {
return modPow(n, MOD - 2);
}
static void factorial(int n) {
if (Fa == null) {
Fa = new ArrayList<>();
Fa.add(1L);
Fa.add(1L);
}
for (int i = Fa.size(); i <= n; i++) {
Fa.add((Fa.get(i - 1) * i) % MOD);
}
}
static long modPow(long x, long n) {
long res = 1L;
while (n > 0) {
if ((n & 1) == 1) {
res = res * x % MOD;
}
x = x * x % MOD;
n >>= 1;
}
return res;
}
//↑nCrmod
static long lcm(long n, long r) {
return n / gcd(n, r) * r;
}
static int gcd(int n, int r) {
return r == 0 ? n : gcd(r, n % r);
}
static long gcd(long n, long r) {
return r == 0 ? n : gcd(r, n % r);
}
public static int u0(int a) {
if (a < 0) return 0;
return a;
}
public static long u0(long a) {
if (a < 0) return 0;
return a;
}
public static boolean[][] tbt(char[][] s, char c) {
boolean[][] res = new boolean[s.length][s[0].length];
for (int hi = 0; hi < s.length; hi++)
for (int wi = 0; wi < s[0].length; wi++)
if (s[hi][wi] == c) res[hi][wi] = true;
return res;
}
public static int[] tia(int a) {
int[] res = new int[keta(a)];
for (int i = res.length - 1; i >= 0; i--) {
res[i] = a % 10;
a /= 10;
}
return res;
}
public static int[][] tit(char[][] a) {
int[][] res = new int[a.length][a[0].length];
for (int hi = 0; hi < a.length; hi++) {
for (int wi = 0; wi < a[0].length; wi++) {
res[hi][wi] = a[hi][wi] - '0';
}
}
return res;
}
public static Integer[] toIntegerArray(int[] ar) {
Integer[] res = new Integer[ar.length];
for (int i = 0; i < ar.length; i++) {
res[i] = ar[i];
}
return res;
}
public static long bitGetCombSizeK(int k) {
return (1 << k) - 1;
}
//k 110110 -> 111001
public static long bitNextComb(long comb) {
long x = comb & -comb; //1
long y = comb + x; //1
return ((comb & ~y) / x >> 1) | y;
}
public static int keta(long num) {
int res = 0;
while (num > 0) {
num /= 10;
res++;
}
return res;
}
public static int ketaSum(long num) {
int res = 0;
while (num > 0) {
res += num % 10;
num /= 10;
}
return res;
}
public static boolean isOutofIndex(int x, int y, int w, int h) {
if (x < 0 || y < 0) return true;
if (w <= x || h <= y) return true;
return false;
}
public static boolean isOutofIndex(int x, int y, char[][] ban) {
if (x < 0 || y < 0) return true;
if (ban[0].length <= x || ban.length <= y) return true;
return false;
}
public static int arrayCount(int[] a, int v) {
int res = 0;
for (int i = 0; i < a.length; i++) {
if (a[i] == v) res++;
}
return res;
}
public static int arrayCount(long[] a, int v) {
int res = 0;
for (int i = 0; i < a.length; i++) {
if (a[i] == v) res++;
}
return res;
}
public static int arrayCount(int[][] a, int v) {
int res = 0;
for (int hi = 0; hi < a.length; hi++) {
for (int wi = 0; wi < a[0].length; wi++) {
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static int arrayCount(long[][] a, int v) {
int res = 0;
for (int hi = 0; hi < a.length; hi++) {
for (int wi = 0; wi < a[0].length; wi++) {
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static int arrayCount(char[][] a, char v) {
int res = 0;
for (int hi = 0; hi < a.length; hi++) {
for (int wi = 0; wi < a[0].length; wi++) {
if (a[hi][wi] == v) res++;
}
}
return res;
}
public static void setPrimes() {
int n = 100001;
isPrime = new boolean[n];
Arrays.fill(isPrime, true);
isPrime[0] = isPrime[1] = false;
for (int i = 2; i * i <= n; i++) {
if (!isPrime[i]) continue;
for (int j = i * 2; j < n; j += i) {
isPrime[j] = false;
}
}
primes = new ArrayList<>();
for (int i = 2; i < n; i++) {
if (isPrime[i]) primes.add(i);
}
}
public static void revSort(int[] a) {
Arrays.sort(a);
reverse(a);
}
public static void revSort(long[] a) {
Arrays.sort(a);
reverse(a);
}
public static int[][] clone(int[][] ar) {
int[][] nr = new int[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
public static long[][] clone(long[][] ar) {
long[][] nr = new long[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
public static double[][] clone(double[][] ar) {
double[][] nr = new double[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
public static boolean[][] clone(boolean[][] ar) {
boolean[][] nr = new boolean[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
public static char[][] clone(char[][] ar) {
char[][] nr = new char[ar.length][ar[0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
nr[i][j] = ar[i][j];
return nr;
}
public static int[][][] clone(int[][][] ar) {
int[][][] nr = new int[ar.length][ar[0].length][ar[0][0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
for (int k = 0; k < ar[0][0].length; k++)
nr[i][j][k] = ar[i][j][k];
return nr;
}
public static long[][][] clone(long[][][] ar) {
long[][][] nr = new long[ar.length][ar[0].length][ar[0][0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
for (int k = 0; k < ar[0][0].length; k++)
nr[i][j][k] = ar[i][j][k];
return nr;
}
public static double[][][] clone(double[][][] ar) {
double[][][] nr = new double[ar.length][ar[0].length][ar[0][0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
for (int k = 0; k < ar[0][0].length; k++)
nr[i][j][k] = ar[i][j][k];
return nr;
}
public static boolean[][][] clone(boolean[][][] ar) {
boolean[][][] nr = new boolean[ar.length][ar[0].length][ar[0][0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
for (int k = 0; k < ar[0][0].length; k++)
nr[i][j][k] = ar[i][j][k];
return nr;
}
public static char[][][] clone(char[][][] ar) {
char[][][] nr = new char[ar.length][ar[0].length][ar[0][0].length];
for (int i = 0; i < ar.length; i++)
for (int j = 0; j < ar[0].length; j++)
for (int k = 0; k < ar[0][0].length; k++)
nr[i][j][k] = ar[i][j][k];
return nr;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static <T extends Number> int lowerBound(final List<T> lis, final T value) {
int low = 0;
int high = lis.size();
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (lis.get(mid).doubleValue() < value.doubleValue()) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static <T extends Number> int upperBound(final List<T> lis, final T value) {
int low = 0;
int high = lis.size();
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (lis.get(mid).doubleValue() < value.doubleValue()) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static int lowerBound(final int[] arr, final int value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (arr[mid] < value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static int upperBound(final int[] arr, final int value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (arr[mid] <= value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static long lowerBound(final long[] arr, final long value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (arr[mid] < value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
/**
* <h1></h1>
* <p></p>
*
* @return<b>int</b>
*
*/
public static long upperBound(final long[] arr, final long value) {
int low = 0;
int high = arr.length;
int mid;
while (low < high) {
mid = ((high - low) >>> 1) + low; //(low + high) / 2 ()
if (arr[mid] <= value) {
low = mid + 1;
} else {
high = mid;
}
}
return low;
}
//false
public static boolean nextPermutation(int A[]) {
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--) {
if (A[pos] < A[pos + 1]) break;
}
if (pos == -1) return false;
//pos
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1) {
int mid = (ok + ng) / 2;
if (A[mid] > A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
//false
public static boolean prevPermutation(int A[]) {
int len = A.length;
int pos = len - 2;
for (; pos >= 0; pos--) {
if (A[pos] > A[pos + 1]) break;
}
if (pos == -1) return false;
//pos
int ok = pos + 1;
int ng = len;
while (Math.abs(ng - ok) > 1) {
int mid = (ok + ng) / 2;
if (A[mid] < A[pos]) ok = mid;
else ng = mid;
}
swap(A, pos, ok);
reverse(A, pos + 1, len - 1);
return true;
}
static <T> void swap(T[] x, int i, int j) {
T t = x[i];
x[i] = x[j];
x[j] = t;
}
static void swap(char[] x, int i, int j) {
char t = x[i];
x[i] = x[j];
x[j] = t;
}
static void swap(int[] x, int i, int j) {
int t = x[i];
x[i] = x[j];
x[j] = t;
}
public static void reverse(int[] x) {
int l = 0;
int r = x.length - 1;
while (l < r) {
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(long[] x) {
int l = 0;
int r = x.length - 1;
while (l < r) {
long temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(char[] x) {
int l = 0;
int r = x.length - 1;
while (l < r) {
char temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
public static void reverse(int[] x, int s, int e) {
int l = s;
int r = e;
while (l < r) {
int temp = x[l];
x[l] = x[r];
x[r] = temp;
l++;
r--;
}
}
static int length(int a) {
int cou = 0;
while (a != 0) {
a /= 10;
cou++;
}
return cou;
}
static int length(long a) {
int cou = 0;
while (a != 0) {
a /= 10;
cou++;
}
return cou;
}
static int cou(boolean[] a) {
int res = 0;
for (boolean b : a) {
if (b) res++;
}
return res;
}
static int cou(String s, char c) {
int res = 0;
for (char ci : s.toCharArray()) {
if (ci == c) res++;
}
return res;
}
static int cou(char[][] a, char c) {
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == c) co++;
return co;
}
static int cou(int[] a, int key) {
int co = 0;
for (int i = 0; i < a.length; i++)
if (a[i] == key) co++;
return co;
}
static int cou(long[] a, long key) {
int co = 0;
for (int i = 0; i < a.length; i++)
if (a[i] == key) co++;
return co;
}
static int cou(int[][] a, int key) {
int co = 0;
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
if (a[i][j] == key) co++;
return co;
}
static void fill(int[][] a, int v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(char[][] a, char c) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = c;
}
static void fill(long[][] a, long v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(boolean[][] a, boolean v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
a[i][j] = v;
}
static void fill(int[][][] a, int v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
for (int k = 0; k < a[0][0].length; k++)
a[i][j][k] = v;
}
static void fill(long[][][] a, long v) {
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[0].length; j++)
for (int k = 0; k < a[0][0].length; k++)
a[i][j][k] = v;
}
static int max(int... a) {
int res = Integer.MIN_VALUE;
for (int i : a) {
res = Math.max(res, i);
}
return res;
}
static long max(long... a) {
long res = Integer.MIN_VALUE;
for (long i : a) {
res = Math.max(res, i);
}
return res;
}
static long min(long... a) {
long res = Long.MAX_VALUE;
for (long i : a) {
res = Math.min(res, i);
}
return res;
}
static int max(int[][] ar) {
int res = Integer.MIN_VALUE;
for (int i[] : ar)
res = Math.max(res, max(i));
return res;
}
static long max(long[][] ar) {
long res = Integer.MIN_VALUE;
for (long i[] : ar)
res = Math.max(res, max(i));
return res;
}
static int min(int... a) {
int res = Integer.MAX_VALUE;
for (int i : a) {
res = Math.min(res, i);
}
return res;
}
static int min(int[][] ar) {
int res = Integer.MAX_VALUE;
for (int i[] : ar)
res = Math.min(res, min(i));
return res;
}
public static <T extends Number> long sum(ArrayList<T> lis) {
long res = 0;
for (T li : lis) {
res += li.longValue();
}
return res;
}
static long sum(int[] a) {
long cou = 0;
for (int i : a)
cou += i;
return cou;
}
static long sum(long[] a) {
long cou = 0;
for (long i : a)
cou += i;
return cou;
}
//FastScanner
static BufferedReader reader = new BufferedReader(new InputStreamReader(System.in));
static StringTokenizer tokenizer = null;
public static String next() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
tokenizer = new StringTokenizer(reader.readLine());
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken();
}
/*public String nextChar(){
return (char)next()[0];
}*/
public static String nextLine() {
if (tokenizer == null || !tokenizer.hasMoreTokens()) {
try {
return reader.readLine();
} catch (IOException e) {
throw new RuntimeException(e);
}
}
return tokenizer.nextToken("\n");
}
public static long nl() {
return Long.parseLong(next());
}
public static String n() {
return next();
}
public static int ni() {
return Integer.parseInt(next());
}
public static double nd() {
return Double.parseDouble(next());
}
public static int[] nia(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
return a;
}
//1-index
public static int[] niao(int n) {
int[] a = new int[n + 1];
for (int i = 1; i < n + 1; i++) {
a[i] = ni();
}
return a;
}
//
public static int[] nias(int n, int end) {
int[] a = new int[n + 1];
for (int i = 0; i < n; i++) {
a[i] = ni();
}
a[n] = end;
return a;
}
public static int[] niad(int n) {
int[] a = new int[n];
for (int i = 0; i < n; i++) {
a[i] = ni() - 1;
}
return a;
}
public static P[] npa(int n) {
P[] p = new P[n];
for (int i = 0; i < n; i++) {
p[i] = new P(ni(), ni());
}
return p;
}
public static P[] npad(int n) {
P[] p = new P[n];
for (int i = 0; i < n; i++) {
p[i] = new P(ni() - 1, ni() - 1);
}
return p;
}
public static int[][] nit(int h, int w) {
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = ni();
}
}
return a;
}
public static int[][] nitd(int h, int w) {
int[][] a = new int[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = ni() - 1;
}
}
return a;
}
static int[][] S_ARRAY;
static long[][] S_LARRAY;
static int S_INDEX;
static int S_LINDEX;
//
public static int[] niah(int n, int k) throws Exception {
if (S_ARRAY == null) {
S_ARRAY = new int[k][n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < k; i++) {
S_ARRAY[i][j] = ni();
}
}
}
return S_ARRAY[S_INDEX++];
}
public static long[] nlah(int n, int k) throws Exception {
if (S_LARRAY == null) {
S_LARRAY = new long[k][n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < k; i++) {
S_LARRAY[i][j] = nl();
}
}
}
return S_LARRAY[S_LINDEX++];
}
//
public static int[] niahd(int n, int k) throws Exception {
if (S_ARRAY == null) {
S_ARRAY = new int[k][n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < k; i++) {
S_ARRAY[i][j] = ni() - 1;
}
}
}
return S_ARRAY[S_INDEX++];
}
public static long[] nlahd(int n, int k) throws Exception {
if (S_LARRAY == null) {
S_LARRAY = new long[k][n];
for (int j = 0; j < n; j++) {
for (int i = 0; i < k; i++) {
S_LARRAY[i][j] = nl() - 1;
}
}
}
return S_LARRAY[S_LINDEX++];
}
public static char[] nca() {
char[] a = next().toCharArray();
return a;
}
public static String[] nsa(int n) {
String[] res = new String[n];
for (int i = 0; i < n; i++) {
res[i] = n();
}
return res;
}
//
public static char[][] ncts(int h, int w) {
char[][] a = new char[h][w];
for (int i = 0; i < h; i++) {
a[i] = nextLine().replace(" ", "").toCharArray();
}
return a;
}
public static char[][] nct(int h, int w) {
char[][] a = new char[h][w];
for (int hi = 0; hi < h; hi++) {
String s = nextLine();
for (int wi = 0; wi < s.length(); wi++) {
a[hi][wi] = s.charAt(wi);
}
}
return a;
}
public static char[][] nctp(int h, int w, char c) {
char[][] a = new char[h + 2][w + 2];
for (int hi = 1; hi < h + 1; hi++) {
String s = nextLine();
for (int wi = 1; wi < s.length() + 1; wi++) {
a[hi][wi] = s.charAt(wi - 1);
}
}
for (int wi = 0; wi < w + 2; wi++)
a[0][wi] = a[h + 1][wi] = c;
for (int hi = 0; hi < h + 2; hi++)
a[hi][0] = a[hi][w + 1] = c;
return a;
}
//
public static char[][] nctsp(int h, int w, char c) {
char[][] a = new char[h + 2][w + 2];
//char c = '*';
int i;
for (i = 0; i < w + 2; i++)
a[0][i] = c;
for (i = 1; i < h + 1; i++) {
a[i] = (c + nextLine().replace(" ", "") + c).toCharArray();
}
for (i = 0; i < w + 2; i++)
a[h + 1][i] = c;
return a;
}
public static long[] nla(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nl();
}
return a;
}
public static long[] nlas(int n, long e) {
long[] a = new long[n + 1];
for (int i = 0; i < n; i++) {
a[i] = nl();
}
a[n] = e;
return a;
}
public static long[] nlao(int n) {
long[] a = new long[n + 1];
for (int i = 0; i < n; i++) {
a[i + 1] = nl();
}
return a;
}
public static long[] nlad(int n) {
long[] a = new long[n];
for (int i = 0; i < n; i++) {
a[i] = nl() - 1;
}
return a;
}
public static long[][] nlt(int h, int w) {
long[][] a = new long[h][w];
for (int hi = 0; hi < h; hi++) {
for (int wi = 0; wi < w; wi++) {
a[hi][wi] = nl();
}
}
return a;
}
//便
static class CouMap {
public HashMap<Long, Long> map;
public HashMap<String, Long> smap;
CouMap() {
map = new HashMap();
smap = new HashMap();
}
public void put(long key, long value) {
Long nowValue = map.get(key);
map.put(key, nowValue == null ? value : nowValue + value);
}
public void put(String key, long value) {
Long nowValue = smap.get(key);
smap.put(key, nowValue == null ? value : nowValue + value);
}
public void mput(long key, long value) {
Long nowValue = map.get(key);
map.put(key, nowValue == null ? value % MOD : modSum(nowValue, value));
}
public void put(long key) {
put(key, 1);
}
public void put(String key) {
put(key, 1);
}
public void put(int... arg) {
for (int i : arg) {
put(i, 1);
}
}
public void put(long... arg) {
for (long i : arg) {
put(i, 1);
}
}
public void mput(int... arg) {
for (int i : arg) {
mput(i, 1);
}
}
public void mput(long... arg) {
for (long i : arg) {
mput(i, 1);
}
}
public long get(long key) {
Long v = map.get(key);
return v == null ? 0 : v;
}
public long get(String key) {
Long v = map.get(key);
return v == null ? 0 : v;
}
}
static class P implements Comparable<P> {
int x, y;
@Override
public int compareTo(P p) {
//xy
return x == p.x ? y - p.y : x - p.x;
//xy
//return (x == p.x ? y - p.y : x - p.x) * -1;
//yx
//return y == p.y ? x - p.x : y - p.y;
//yx
//return (y == p.y ? x - p.x : y - p.y) * -1;
//x y
//return x == p.x ? p.y - y : x - p.x;
//x y
//return (x == p.x ? p.y - y : x - p.x) * -1;
//y x
//return y == p.y ? p.x - x : y - p.y;
//y x
//return (y == p.y ? p.x - x : y - p.y) * -1;
}
P(int a, int b) {
x = a;
y = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof P)) return false;
P p = (P) o;
return x == p.x && y == p.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
static class PL implements Comparable<PL> {
long x, y;
public int compareTo(PL p) {
//xy
long res = x == p.x ? y - p.y : x - p.x;
//xy
//long res = (x == p.x ? y - p.y : x - p.x) * -1;
//yx
//long res = y == p.y ? x - p.x : y - p.y;
//yx
//long res = (y == p.y ? x - p.x : y - p.y) * -1;
//x y
//long res = x == p.x ? p.y - y : x - p.x;
//x y
//long res = (x == p.x ? p.y - y : x - p.x) * -1;
//y x
//long res = y == p.y ? p.x - x : y - p.y;
//y x
//long res = (y == p.y ? p.x - x : y - p.y) * -1;
return (res == 0) ? 0 : res > 0 ? 1 : -1;
}
PL(long a, long b) {
x = a;
y = b;
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (!(o instanceof PL)) return false;
PL p = (PL) o;
return x == p.x && y == p.y;
}
@Override
public int hashCode() {
return Objects.hash(x, y);
}
}
public static void main(String[] args) throws Exception {
long startTime = System.currentTimeMillis();
solve();
System.out.flush();
long endTime = System.currentTimeMillis();
if (DEBUG) System.err.println(endTime - startTime);
}
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0