結果
| 問題 | No.318 学学学学学 |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-09-15 05:26:37 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 182 ms / 2,000 ms |
| コード長 | 7,481 bytes |
| コンパイル時間 | 1,532 ms |
| コンパイル使用メモリ | 124,300 KB |
| 実行使用メモリ | 13,568 KB |
| 最終ジャッジ日時 | 2024-06-22 18:43:04 |
| 合計ジャッジ時間 | 5,019 ms |
|
ジャッジサーバーID (参考情報) |
judge2 / judge5 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 26 |
ソースコード
#include <iostream>
#include <numeric>
#include <queue>
#include <map>
#include <list>
#include <vector>
#include <string>
#include <stack>
#include <limits>
#include <climits>
#include <cassert>
#include <fstream>
#include <cstring>
#include <cmath>
#include <bitset>
#include <iomanip>
#include <algorithm>
#include <functional>
#include <cstdio>
#include <ciso646>
#include <set>
#include <array>
#include <unordered_map>
#include <unordered_set>
#include <type_traits>
using namespace std;
#define FOR(i,a,b) for (int i=(a);i<(b);i++)
#define RFOR(i,a,b) for (int i=(b)-1;i>=(a);i--)
#define REP(i,n) for (int i=0;i<(n);i++)
#define RREP(i,n) for (int i=(n)-1;i>=0;i--)
#define inf 0x3f3f3f3f3f3f3f3f
#define ALL(a) (a).begin(),(a).end()
#define DEBUG(x) cout<<#x<<": "<<x<<endl
#define ll long long
#define ull unsigned long long
using pii = pair<ll, ll>;
#define eps 1e-14
#define SETUP cin.tie(0), ios::sync_with_stdio(false), cout << setprecision(15) << std::fixed;
template <class T>
using vec2 = std::vector<vector<T>>;
namespace {
struct input_returnner {
ll N; input_returnner(ll N_ = 0) :N(N_) {}
template<typename T> operator vector<T>() const { vector<T> res(N); for (auto &a : res) cin >> a; return std::move(res); }
template<typename T> operator T() const { T res; cin >> res; return res; }
template<typename T> T operator - (T right) { return T(input_returnner()) - right; }
template<typename T> T operator + (T right) { return T(input_returnner()) + right; }
template<typename T> T operator * (T right) { return T(input_returnner()) * right; }
template<typename T> T operator / (T right) { return T(input_returnner()) / right; }
template<typename T> T operator << (T right) { return T(input_returnner()) << right; }
template<typename T> T operator >> (T right) { return T(input_returnner()) >> right; }
};
template<typename T> input_returnner in() { return in<T>(); }
input_returnner in() { return input_returnner(); }
input_returnner in(ll N) { return std::move(input_returnner(N)); }
}
template<typename T>
istream& operator >> (istream& is, vector<T>& vec) {
for (T& x : vec) is >> x;
return is;
}
template < typename T >
struct is_vector : std::false_type {};
template < typename T >
struct is_vector<std::vector<T>> : std::true_type {};
template < typename T >
constexpr bool is_vector_v = is_vector<T>::value;
template <typename T>
std::ostream& operator<< (std::ostream& out, const std::vector<T>& v) {
if (!v.empty()) {
for (int i = 0; i < v.size(); ++i) {
out << v[i] << (i == v.size() - 1 ? "\n" : (is_vector_v<T> ? "" : ", "));
}
}
return out;
}
namespace std {
// ref: https://stackoverflow.com/questions/7110301/generic-hash-for-tuples-in-unordered-map-unordered-set
template <class T>
inline void hash_combine(std::size_t& seed, T const& v)
{
seed ^= std::hash<T>()(v) + 0x9e3779b9 + (seed << 6) + (seed >> 2);
}
// Recursive template code derived from Matthieu M.
template <class Tuple, size_t Index = std::tuple_size<Tuple>::value - 1>
struct HashValueImpl
{
static void apply(size_t& seed, Tuple const& tuple)
{
HashValueImpl<Tuple, Index - 1>::apply(seed, tuple);
hash_combine(seed, std::get<Index>(tuple));
}
};
template <class Tuple>
struct HashValueImpl<Tuple, 0>
{
static void apply(size_t& seed, Tuple const& tuple)
{
hash_combine(seed, std::get<0>(tuple));
}
};
template <typename ... TT>
struct hash<std::tuple<TT...>>
{
size_t operator()(std::tuple<TT...> const& tt) const
{
size_t seed = 0;
HashValueImpl<std::tuple<TT...> >::apply(seed, tt);
return seed;
}
};
template <class T, class U>
class hash<std::pair<T, U>> {
public:
size_t operator()(const std::pair<T, U>& x) const {
return hash<std::tuple<T, U>>()(std::tie(x.first, x.second));
}
};
}
// ref: https://stackoverflow.com/questions/6245735/pretty-print-stdtuple
namespace aux {
template<std::size_t...> struct seq {};
template<std::size_t N, std::size_t... Is>
struct gen_seq : gen_seq<N - 1, N - 1, Is...> {};
template<std::size_t... Is>
struct gen_seq<0, Is...> : seq<Is...> {};
template<class Ch, class Tr, class Tuple, std::size_t... Is>
void print_tuple(std::basic_ostream<Ch, Tr>& os, Tuple const& t, seq<Is...>) {
using swallow = int[];
(void)swallow {
0, (void(os << (Is == 0 ? "" : ", ") << std::get<Is>(t)), 0)...
};
}
} // aux::
template<class Ch, class Tr, class... Args>
auto operator<<(std::basic_ostream<Ch, Tr>& os, std::tuple<Args...> const& t)
-> std::basic_ostream<Ch, Tr>&
{
os << "(";
aux::print_tuple(os, t, aux::gen_seq<sizeof...(Args)>());
return os << ")";
}
template<class S, class T>
std::ostream & operator<<(std::ostream & os, const std::pair<S, T> & p)
{
return os << "(" << p.first << ", " << p.second << ")";
}
// ref: https://stackoverflow.com/questions/8542591/c11-reverse-range-based-for-loo�Fp
template <typename T>
struct reversion_wrapper { T& iterable; };
template <typename T>
auto begin(reversion_wrapper<T> w) { return std::rbegin(w.iterable); }
template <typename T>
auto end(reversion_wrapper<T> w) { return std::rend(w.iterable); }
template <typename T>
reversion_wrapper<T> REV(T&& iterable) { return { iterable }; }
template<class T>
bool inside(T left, T val, T right) {
return left <= val and val < right;
}
int bitCount(int num) {
int res = 0;
while (num > 0) {
num >>= 1;
++res;
}
return res;
}
ll MOD = 1e9 + 7;
void solve();
signed main() {
SETUP;
solve();
#ifdef _DEBUGa
//system("pause");
#endif
return 0;
}
// template
#define int long long
template<class T>
class LazySegtree {
private:
int n;
vector<T> dat;
vector<T> lazy;
vector<bool> lazyFlag;
void eval(int k, int l, int r){
if (lazyFlag[k]) {
dat[k] = lazy[k];
if (r - l > 1) {
lazy[2 * k + 1] = lazy[k];
lazy[2 * k + 2] = lazy[k];
lazyFlag[2 * k + 1] = lazyFlag[2 * k + 2] = true;
}
}
lazyFlag[k] = false;
}
T query(int a, int b, int k, int l, int r) {
eval(k, l, r);
if (r <= a || b <= l) return numeric_limits<T>::max();
if (a <= l & r <= b) return dat[k];
T vl = query(a, b, k * 2 + 1, l, (l + r) / 2);
T vr = query(a, b, k * 2 + 2, (l + r) / 2, r);
return min(vl, vr);
}
// change [a,b) to value
void update(int a, int b, T value, int k, int l, int r){
eval(k, l, r);
if (b <= l or r <= a) return;
if (a <= l and r <= b) {
lazy[k] = value;
lazyFlag[k] = true;
eval(k, l, r);
}
else {
update(a, b, value, 2 * k + 1, l, (l + r) / 2);
update(a, b, value, 2 * k + 2, (l + r) / 2, r);
dat[k] = min(dat[2 * k + 1], dat[2 * k + 2]);
}
}
public:
LazySegtree(int n_) {
n = 1;
while (n < n_) n *= 2;
dat.resize(2 * n - 1);
lazy.resize(2 * n - 1);
lazyFlag.resize(2 * n - 1);
for (int i = 0; i < 2 * n - 1; ++i) dat[i] = numeric_limits<T>::max();
}
// change [a,b] to value
void update(int a, int b, T value){
update(a, b, value, 0, 0, n);
}
// change k to value
void update(int k, T value) {
update(k, k + 1, value);
}
// get min value at [a, b)
T query(int a, int b) {
return query(a, b, 0, 0, n);
}
};
void solve() {
int N; cin >> N;
map<int, pair<int, int>> field;
LazySegtree<int> seg(N);
REP(i, N) {
int a; cin >> a;
auto it = field.find(a);
if (it == field.end()) field[a] = {i, i};
field[a].second = i;
}
for (auto &a : field) {
seg.update(a.second.first, a.second.second + 1, -(a.first));
}
REP(i, N) {
cout << -seg.query(i, i + 1) << " ";
}
}