結果
| 問題 |
No.194 フィボナッチ数列の理解(1)
|
| コンテスト | |
| ユーザー |
kei
|
| 提出日時 | 2018-09-17 00:15:52 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 20 ms / 5,000 ms |
| コード長 | 3,022 bytes |
| コンパイル時間 | 1,783 ms |
| コンパイル使用メモリ | 177,528 KB |
| 実行使用メモリ | 18,832 KB |
| 最終ジャッジ日時 | 2024-07-18 07:34:05 |
| 合計ジャッジ時間 | 2,863 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 37 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
/*
<url:https://yukicoder.me/problems/no/194>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
const ll MOD = 1e9+7;
typedef vector<ll> vec;
typedef vector<vec> mat;
mat mul(mat&A,mat&B,const ll M){
mat C(A.size(),vec(B[0].size()));
for(int i = 0; i < (int)A.size();i++){
for(int k = 0; k < (int)B.size();k++){
for(int j = 0; j < B[0].size();j++){
C[i][j] = (C[i][j] + A[i][k]*B[k][j])%M;
}
}
}
return C;
}
mat pow(mat A,ll n,const ll M){
mat B(A.size(),vec(A.size()));
for(int i = 0; i < A.size();i++){
B[i][i] = 1;
}
while(n > 0){
if(n&1) B= mul(B,A,M);
A = mul(A,A,M);
n>>=1;
}
return B;
}
vector<ll> solve(){
vector<ll> res;
ll N,K; cin >> N >> K;
vector<ll> A(N); for(auto& in:A) cin >> in;
if(K<=1e6){ // testcase01~10
vector<ll> F(K+1),S(K+1);
for(int i = 0; i < N;i++){
(F[i+1] = A[i])%=MOD;
(S[i+1] = S[i] + A[i])%=MOD;
}
for(ll i = N+1; i <= K;i++){
(F[i] = S[i-1] - S[i-1-N] + MOD)%=MOD;
(S[i] = S[i-1] + F[i])%=MOD;
}
res = vector<ll>{F[K],S[K]};
}else{ // testcase11~20
vector<vector<ll>> Mat(N+1,vector<ll>(N+1));
for(int i = 0; i <= N;i++) Mat[0][i] = 1;
for(int i = 1; i <= N;i++) Mat[1][i] = 1;
for(int i = 2; i <= N;i++) Mat[i][i-1] = 1;
auto retMat = pow(Mat,K-N,MOD);
vector<vector<ll>> B(N+1,vector<ll>(1));
B[0][0] = accumulate(A.begin(),A.end(),0LL)%MOD;
for(int i = 1; i <= N;i++) B[i][0] = A[N-i];
auto ansMat = mul(retMat,B,MOD);
res = vector<ll>{ansMat[1][0],ansMat[0][0]};
}
return res;
}
int main(void) {
cin.tie(0); ios_base::sync_with_stdio(false);
cout << solve() << endl;
return 0;
}
kei