結果
| 問題 |
No.654 Air E869120
|
| コンテスト | |
| ユーザー |
___0_u_0___
|
| 提出日時 | 2018-09-17 17:33:51 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,673 bytes |
| コンパイル時間 | 787 ms |
| コンパイル使用メモリ | 71,812 KB |
| 実行使用メモリ | 5,376 KB |
| 最終ジャッジ日時 | 2024-07-18 07:46:25 |
| 合計ジャッジ時間 | 2,602 ms |
|
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 5 |
| other | AC * 17 WA * 13 RE * 5 |
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:245:8: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
245 | scanf("%d%d%d", &n, &m, &d);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~
main.cpp:247:10: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
247 | scanf("%d%d%d%d%d", &u[i], &v[i], &p[i], &q[i], &w[i]);
| ~~~~~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
ソースコード
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
#include<string>
using namespace std;
typedef long long ll;
typedef pair<int, int> P;
/**** Const List ****/
#define INF 1000000000
#define LLINF 100000000000000000
/**** Network Flow ****/
#define MAX_FLOW_MAX_V 10000
class MaxFlow {
public:
struct edge { int to, cap, rev; };
vector<edge> G[MAX_FLOW_MAX_V];
bool used[MAX_FLOW_MAX_V];
int level[MAX_FLOW_MAX_V];
int iter[MAX_FLOW_MAX_V];
void init() {
for (int i = 0; i < MAX_FLOW_MAX_V; i++) {
G[i].clear();
}
}
void add_edge(int from, int to, int cap) {
G[from].push_back((edge){to, cap, (int)G[to].size()});
G[to].push_back((edge){from, 0, (int)G[from].size() - 1});
}
void add_undirected_edge(int e1, int e2, int cap) {
G[e1].push_back((edge){e2, cap, (int)G[e2].size()});
G[e2].push_back((edge){e1, cap, (int)G[e1].size() - 1});
}
int dfs(int v, int t, int f) {
if (v == t) return f;
used[v] = true;
for (int i = 0; i < (int)G[v].size(); i++) {
edge &e = G[v][i];
if (!used[e.to]&& e.cap > 0) {
int d = dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int max_flow(int s, int t) {
int flow = 0;
while (1) {
memset(used, 0, sizeof(used));
int f = dfs(s, t, INF);
if (f == 0) return flow;
flow += f;
}
}
void bfs(int s) {
memset(level, -1, sizeof(level));
queue<int> que;
level[s] = 0;
que.push(s);
while (!que.empty()) {
int v = que.front(); que.pop();
for (int i = 0; i < (int)G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && level[e.to] < 0) {
level[e.to] = level[v] + 1;
que.push(e.to);
}
}
}
}
int dinic_dfs(int v, int t, int f) {
if (v == t) return f;
for (int &i= iter[v]; i < (int)G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && level[v] < level[e.to]) {
int d = dinic_dfs(e.to, t, min(f, e.cap));
if (d > 0) {
e.cap -= d;
G[e.to][e.rev].cap += d;
return d;
}
}
}
return 0;
}
int dinic(int s, int t) {
int flow = 0;
while (1) {
bfs(s);
if (level[t] < 0) return flow;
memset(iter, 0, sizeof(iter));
int f;
while ((f = dinic_dfs(s, t, INF)) > 0) {
flow += f;
}
}
}
};
/**** bipartite matching ****/
#define BIPARTITE_MATCHING_MAX_V 10000
class BipartiteMatching {
public:
int V;
vector<int> G[BIPARTITE_MATCHING_MAX_V];
int match[BIPARTITE_MATCHING_MAX_V];
bool used[BIPARTITE_MATCHING_MAX_V];
BipartiteMatching(int v) {
V = v;
}
void init(int v) {
V = v;
for (int i = 0; i < BIPARTITE_MATCHING_MAX_V; i++) {
G[i].clear();
}
}
void add_edge(int u, int v) {
G[u].push_back(v);
G[v].push_back(u);
}
bool dfs(int v) {
used[v] = true;
for (int i = 0; i < (int)G[v].size(); i++) {
int u = G[v][i], w = match[u];
if (w < 0 || !used[w] && dfs(w)) {
match[v] = u;
match[u] = v;
return true;
}
}
return false;
}
int max_matching() {
int res = 0;
memset(match, -1, sizeof(match));
for (int v = 0; v < V;v++) {
if (match[v] < 0) {
memset(used, 0, sizeof(used));
if (dfs(v)) {
res++;
}
}
}
return res;
}
};
#define MIN_COST_FLOW_MAX_V 10000
class MinCostFlow {
public:
struct edge { int to, cap, cost, rev; };
int V;
vector<edge> G[MIN_COST_FLOW_MAX_V];
int dist[MIN_COST_FLOW_MAX_V];
int prevv[MIN_COST_FLOW_MAX_V];
int preve[MIN_COST_FLOW_MAX_V];
MinCostFlow(int v) {
V = v;
}
void init() {
for (int i = 0; i < MAX_FLOW_MAX_V; i++) {
G[i].clear();
}
}
void add_edge(int from, int to, int cap, int cost) {
G[from].push_back((edge){to, cap, cost, (int)G[to].size()});
G[to].push_back((edge){from, 0, -cost, (int)G[from].size() - 1});
}
void add_undirected_edge(int e1, int e2, int cap, int cost) {
add_edge(e1, e2, cap, cost);
add_edge(e2, e1, cap, cost);
}
int min_cost_flow(int s, int t, int f) { // minas
int res = 0;
while (f > 0) {
fill(dist, dist + V, INF);
dist[s] = 0;
bool update = true;
while (update) {
update = false;
for (int v = 0; v < V; v++) {
if (dist[v] == INF) continue;
for (int i = 0; i < (int)G[v].size(); i++) {
edge &e = G[v][i];
if (e.cap > 0 && dist[e.to] > dist[v] + e.cost) {
dist[e.to] = dist[v] + e.cost;
prevv[e.to] = v;
preve[e.to] = i;
update = true;
}
}
}
}
if (dist[t] == INF) {
return -1;
}
int d = f;
for (int v = t; v != s; v = prevv[v]) {
d = min(d, G[prevv[v]][preve[v]].cap);
}
f -= d;
res += d * dist[t];
for (int v = t; v != s; v = prevv[v]) {
edge &e = G[prevv[v]][preve[v]];
e.cap -= d;
G[v][e.rev].cap += d;
}
}
return res;
}
int min_cost_flow_dijkstra(int s, int t, int f) {
int res = 0;
//fill(h, h + V, 0);
while (f > 0) {
priority_queue<P, vector<P>, greater<P> > que;
//fill(dist,
// あとで書く
}
return 0;
}
};
int n, m, d;
int u[1000], v[1000], p[1000], q[1000], w[1000];
vector<int> E[1000];
int num[1000], endnum;
MaxFlow f;
int main() {
scanf("%d%d%d", &n, &m, &d);
for (int i = 0; i < m; i++) {
scanf("%d%d%d%d%d", &u[i], &v[i], &p[i], &q[i], &w[i]);
u[i]--; v[i]--;
E[u[i]].push_back(p[i]);
}
int temp = 0;
for (int i = 0; i < n; i++) {
num[i] = temp;
temp += (int)E[i].size();
sort(E[i].begin(), E[i].end());
}
endnum = temp;
for (int i = 0; i < m; i++) {
int from = u[i], to = v[i], time = q[i] + d;
int size = (int)E[to].size(), j, fromnumber = 0;
while (E[from][fromnumber] != p[i]) fromnumber++;
fromnumber += num[from];
if (to == n - 1) {
f.add_edge(fromnumber, endnum, w[i]);
continue;
}
if (time > E[to][size - 1]) continue;
for (j = 0; j < size; j++) {
if (time <= E[to][j]) break;
}
int tonumber = j + num[to];
f.add_edge(fromnumber, tonumber, w[i]);
}
for (int i = 0; i < n; i++) {
int size = (int)E[i].size();
for (int j = 0; j < size - 1; j++) {
f.add_edge(num[i] + j, num[i] + j + 1, INF);
}
}
printf("%d\n", f.dinic(0, endnum));
}
___0_u_0___