結果
問題 | No.245 貫け! |
ユーザー | tancahn2380 |
提出日時 | 2018-09-17 23:49:23 |
言語 | C++11 (gcc 11.4.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 12,253 bytes |
コンパイル時間 | 1,994 ms |
コンパイル使用メモリ | 193,828 KB |
実行使用メモリ | 6,948 KB |
最終ジャッジ日時 | 2024-07-18 07:52:19 |
合計ジャッジ時間 | 3,668 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 3 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,376 KB |
testcase_02 | AC | 3 ms
5,376 KB |
testcase_03 | AC | 2 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 3 ms
5,376 KB |
testcase_09 | WA | - |
testcase_10 | WA | - |
testcase_11 | WA | - |
testcase_12 | WA | - |
testcase_13 | WA | - |
testcase_14 | WA | - |
testcase_15 | AC | 126 ms
5,376 KB |
testcase_16 | WA | - |
testcase_17 | AC | 123 ms
5,376 KB |
testcase_18 | WA | - |
testcase_19 | WA | - |
コンパイルメッセージ
main.cpp: In function ‘int main()’: main.cpp:447:15: warning: ignoring return value of ‘int system(const char*)’ declared with attribute ‘warn_unused_result’ [-Wunused-result] 447 | system("pause"); | ~~~~~~^~~~~~~~~
ソースコード
# include "bits/stdc++.h" using namespace std; using LL = long long; using ULL = unsigned long long; const double PI = acos(-1); template<class T>constexpr T INF() { return ::std::numeric_limits<T>::max(); } template<class T>constexpr T HINF() { return INF<T>() / 2; } template <typename T_char>T_char TL(T_char cX) { return tolower(cX); }; template <typename T_char>T_char TU(T_char cX) { return toupper(cX); }; const int vy[] = { -1, -1, -1, 0, 1, 1, 1, 0 }, vx[] = { -1, 0, 1, 1, 1, 0, -1, -1 }; const int dx[4] = { -1,0,1,0 }, dy[4] = { 0,-1,0,1 }; int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; } int d_sum(LL n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; } int d_cnt(LL n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; } LL gcd(LL a, LL b) { if (b == 0)return a; return gcd(b, a%b); }; LL lcm(LL a, LL b) { LL g = gcd(a, b); return a / g*b; }; # define ALL(qpqpq) (qpqpq).begin(),(qpqpq).end() # define UNIQUE(wpwpw) (wpwpw).erase(unique(ALL((wpwpw))),(wpwpw).end()) # define LOWER(epepe) transform(ALL((epepe)),(epepe).begin(),TL<char>) # define UPPER(rprpr) transform(ALL((rprpr)),(rprpr).begin(),TU<char>) # define FOR(i,tptpt,ypypy) for(LL i=(tptpt);i<(ypypy);i++) # define REP(i,upupu) FOR(i,0,upupu) # define INIT std::ios::sync_with_stdio(false);std::cin.tie(0) # pragma warning(disable:4996) //定義系 double EPS = 1e-10; //誤差を考慮して足し算を行う double add(double a, double b) { if (abs(a + b) < EPS*(abs(a) + abs(b)))return 0; return a + b; } //Point struct Point { double x, y; Point() {} Point(double x, double y) :x(x), y(y) { } Point operator + (Point p) { return Point(add(x, p.x), add(y, p.y)); } Point operator - (Point p) { return Point(add(x, -p.x), add(y, -p.y)); } Point operator * (double d) { return Point(x*d, y*d); } Point operator / (double d) { return Point(x / d, y / d); } //内積 double dot(Point p) { return add(x*p.x, y*p.y); } //外積 double det(Point p) { return add(x*p.y, -y*p.x); } //点の大小比較 bool operator <(const Point &p)const { if (fabs(add(x, -p.x)) < EPS)return y < p.y; return x < p.x; } bool operator ==(const Point &p)const { return fabs(x - p.x) < EPS&&fabs(y - p.y) < EPS; } }; //ベクトル。使い分けるといいかも typedef Point Vector; //ベクトルの大きさの2乗 double norm(Vector p) { return p.x*p.x + p.y*p.y; } //ベクトルの大きさ double abs(Vector p) { return sqrt(norm(p)); } //線分 struct Segment { Point p1, p2; }; //直線 typedef Segment Line; //中心c,半径rの円 struct Circle { Point c; double r; Circle(Point c = Point(), double r = 0.0) :c(c), r(r) {} }; //多角形 typedef vector<Point> Polygon; //頂点集合 typedef vector<Point> Points; //計算・アルゴリズム系 //反時計回りCCW static const int COUNTER_CLOCKWISE = 1; static const int CLOCKWISE = -1; static const int ONLINE_BACK = 2; static const int ONLINE_FRONT = -2; static const int ON_SEGMENT = 0; int ccw(Point p0, Point p1, Point p2) { Vector a = p1 - p0; Vector b = p2 - p0; if (a.det(b) > EPS)return COUNTER_CLOCKWISE; if (a.det(b) < -EPS)return CLOCKWISE; if (a.dot(b) < -EPS)return ONLINE_BACK; if (norm(a) < norm(b))return ONLINE_FRONT; return ON_SEGMENT; } //線分p1p2と線分p3p4の交差判定 bool intersect(Point p1, Point p2, Point p3, Point p4) { return (ccw(p1, p2, p3)*ccw(p1, p2, p4) <= 0 && ccw(p3, p4, p1)*ccw(p3, p4, p2) <= EPS); } bool intersect(Segment s1, Segment s2) { return intersect(s1.p1, s1.p2, s2.p1, s2.p2); } static const int ICC_SEPERATE = 4; static const int ICC_CIRCUMSCRIBE = 3; static const int ICC_INTERSECT = 2; static const int ICC_INSCRIBE = 1; static const int ICC_CONTAIN = 0; //円と円の交差判定 int intersect(Circle c1, Circle c2) { if (c1.r<c2.r) swap(c1, c2); double d = abs(c1.c - c2.c); double r = c1.r + c2.r; if (d == r) return ICC_CIRCUMSCRIBE; if (d>r) return ICC_SEPERATE; if (d + c2.r == c1.r) return ICC_INSCRIBE; if (d + c2.r<c1.r) return ICC_CONTAIN; return ICC_INTERSECT; } //ベクトルa,bの直交判定 bool isOrthogonal(Vector a, Vector b) { return a.dot(b) == 0.0; } bool isOrthogonal(Point a1, Point a2, Point b1, Point b2) { return isOrthogonal(a1 - a2, b1 - b2); } bool isOrthogonal(Segment s1, Segment s2) { return (s1.p2 - s1.p1).dot(s2.p2 - s2.p1) == 0.0; } //ベクトルa,bの並行判定 bool isParallel(Vector a, Vector b) { return a.det(b) == 0.0; } bool isParallel(Point a1, Point a2, Point b1, Point b2) { return isParallel(a1 - a2, b1 - b2); } bool isParallel(Segment s1, Segment s2) { return (s1.p2 - s1.p1).det(s2.p2 - s2.p1) == 0.0; } //射影(点p1と点p2を通る直線に点pから垂線を引いた交点xを求める) Point project(Segment s, Point p) { Vector base = s.p2 - s.p1; double r = (p - s.p1).dot(base) / norm(base); return s.p1 + base*r; } //反射(点p1と点p2を通る直線を対象軸として点pと線対称の位置にある点xを求める) Point reflect(Segment s, Point p) { return p + (project(s, p) - p)*2.0; } //点aと点bの距離 double getDistance(Point a, Point b) { return abs(a - b); } //直線lと点pの距離 double getDistanceLP(Line l, Point p) { return abs((l.p2 - l.p1).det(p - l.p1) / abs(l.p2 - l.p1)); } //線分sと点pの距離 double getDistanceSP(Segment s, Point p) { if ((s.p2 - s.p1).dot(p - s.p1) < 0.0)return abs(p - s.p1); if ((s.p1 - s.p2).dot(p - s.p2) < 0.0)return abs(p - s.p2); return getDistanceLP(s, p); } //線分s1と線分s2の距離 double getDistance(Segment s1, Segment s2) { if (intersect(s1, s2))return 0.0; return min({ getDistanceSP(s1, s2.p1), getDistanceSP(s1, s2.p2), getDistanceSP(s2, s1.p1), getDistanceSP(s2, s1.p2) }); } //線分s1と線分s2の交点 Point getCrossPoint(Segment l, Segment m) { double d1 = (l.p2 - l.p1).det(m.p2 - m.p1); double d2 = (l.p2 - l.p1).det(l.p2 - m.p1); if (abs(d1) < EPS && abs(d2) < EPS) return m.p1; return m.p1 + (m.p2 - m.p1) * d2 / d1; } //円cと線分lの交点 pair<Point, Point>getCrossPoints(Circle c, Line l) { Vector pr = project(l, c.c); Vector e = (l.p2 - l.p1) / abs(l.p2 - l.p1); double base = sqrt(c.r*c.r - norm(pr - c.c)); return make_pair(pr + e*base, pr - e*base); } //円c1と円c2の交点 double arg(Vector p) { return atan2(p.y, p.x); } Vector polar(double a, double r) { return Point(cos(r)*a, sin(r)*a); } pair<Point, Point>getCrossPoints(Circle c1, Circle c2) { double d = abs(c1.c - c2.c); double a = acos((c1.r*c1.r + d*d - c2.r*c2.r) / (2 * c1.r*d)); double t = arg(c2.c - c1.c); return make_pair(c1.c + polar(c1.r, t + a), c1.c + polar(c1.r, t - a)); } //点pを通る円cの接線 pair< Point, Point > tangent(Circle c1, Point p2) { pair<Point, Point> d = getCrossPoints(c1, Circle(p2, sqrt(norm(c1.c - p2) - c1.r * c1.r))); return minmax(d.first, d.second); } //点の内包 0:in,1:on,2:out int contains(Polygon g, Point p) { int n = g.size(); bool x = false; for (int i = 0; i < n; i++) { Point a = g[i] - p, b = g[(i + 1) % n] - p; if (abs(a.det(b)) < EPS&&a.dot(b) < EPS) return 1; if (a.y > b.y)swap(a, b); if (a.y < EPS&&EPS < b.y&&EPS < a.det(b))x = !x; } return (x ? 2 : 0); } //凸包を求める(辺上も含める場合は!=CLOCKWISEを==COUNTER_CLOCKWISEに) Polygon convex_hull(Polygon s) { Polygon u, l; if (s.size() <= 2)return s; sort(s.begin(), s.end(), [](const Point &p1, const Point &p2) {return p1.y == p2.y ? p1.x<p2.x : p1.y<p2.y; }); u.push_back(s[0]); u.push_back(s[1]); l.push_back(s[s.size() - 1]); l.push_back(s[s.size() - 2]); for (int i = 2; i<s.size(); i++) { for (int n = u.size(); n >= 2 && ccw(u[n - 2], u[n - 1], s[i]) != CLOCKWISE&&ccw(u[n - 2], u[n - 1], s[i]) != ONLINE_FRONT; n--) { u.pop_back(); } u.push_back(s[i]); } for (int i = s.size() - 3; i >= 0; i--) { for (int n = l.size(); n >= 2 && ccw(l[n - 2], l[n - 1], s[i]) != CLOCKWISE&&ccw(l[n - 2], l[n - 1], s[i]) != ONLINE_FRONT; n--) { l.pop_back(); } l.push_back(s[i]); } reverse(l.begin(), l.end()); for (int i = u.size() - 2; i >= 1; i--)l.push_back(u[i]); return l; } //y座標の昇順でマージするための比較関数 bool compare_y(Point a, Point b) { return a.y < b.y; } //最近点対 double closest_pair(Point *a, int n) { if (n <= 1)return INF<double>(); sort(a, a + n); int m = n / 2; double x = a[m].x; double d = min({ closest_pair(a,m),closest_pair(a + m,n - m) });//p,qが違う区間にある inplace_merge(a, a + m, a + n, compare_y);//2つのソートされた列をマージ //p,qが同じ区間にある Points b;//直線から距離d未満の頂点を入れていく for (int i = 0; i < n; i++) { if (add(fabs(add(a[i].x, -x)), -d) >= 0.0)continue; //bに入っている頂点を、末尾からy座標の差がd以上になるまで見ていく for (int j = 0; j < b.size(); j++) { Point dd; dd.x = add(a[i].x, -b[b.size() - j - 1].x); dd.y = add(a[i].y, -b[b.size() - j - 1].y); if (add(dd.y, -d) >= 0.0)break; d = min(d, abs(dd)); } b.emplace_back(a[i]); } return d; } //多角形の面積 double area(Polygon p) { int n = p.size(); double sum = 0.0; for (int i = 0; i < n; i++) { sum = add(sum, 0.5*p[i].det(p[(i + 1) % n])); } return sum < 0.0 ? -sum : sum; } //凸性判定 bool is_convex(Polygon p) { for (int i = 0; i < p.size(); i++) { if (ccw(p[(i - 1 + p.size()) % p.size()], p[i], p[(i + 1) % p.size()]) == -1)return false; } return true; } //切断 Polygon convex_cut(Polygon p, Line l) { Polygon ret; for (int i = 0; i < p.size(); i++) { Point cur = p[i], nxt = p[(i + 1) % p.size()]; if (ccw(l.p1, l.p2, cur) != -1)ret.emplace_back(cur); if (ccw(l.p1, l.p2, cur)*ccw(l.p1, l.p2, nxt) < 0) { Segment seg; seg.p1 = cur; seg.p2 = nxt; ret.emplace_back(getCrossPoint(seg, l)); } } return ret; } //端点の種類 # define BOTTOM 0 # define LEFT 1 # define RIGHT 2 # define TOP 3 class EndPoint { public: Point p; int seg, st;//入力線分のID,端点の種類 EndPoint() {} EndPoint(Point p, int seg, int st) :p(p), seg(seg), st(st) {} bool operator <(const EndPoint &ep)const { //y座標が小さい順に整列 if (p.y == ep.p.y) { return st < ep.st;//yが同一の場合は、下端点、左端点、右端点、上端点の順に調べる } else { return p.y < ep.p.y; } } }; EndPoint EP[202020];//端点のリスト //線分交差問題(マンハッタン幾何) int ManhattanIntersection(vector<Segment> s) { int n = s.size(); for (int i = 0, k = 0; i < n; i++) { //端点p1,p2が左下を基準に並ぶように調整 if (s[i].p1.y == s[i].p2.y) { if (s[i].p1.x>s[i].p2.x)swap(s[i].p1, s[i].p2); } else if (s[i].p1.y > s[i].p2.y)swap(s[i].p1, s[i].p2); if (s[i].p1.y == s[i].p2.y) {//水平線分を端点リストに追加 EP[k++] = EndPoint(s[i].p1, i, LEFT); EP[k++] = EndPoint(s[i].p2, i, RIGHT); } else {//垂直線分を端点リストに追加 EP[k++] = EndPoint(s[i].p1, i, BOTTOM); EP[k++] = EndPoint(s[i].p2, i, TOP); } } sort(EP, EP + 2 * n);//端点のy座標に関して昇順に整列 set<LL> bt;//二分探索木 bt.insert(1010101010); int cnt = 0; for (int i = 0; i < 2 * n; i++) { if (EP[i].st == TOP) { bt.erase(EP[i].p.x);//上端点を削除 } else if (EP[i].st == BOTTOM) { bt.insert(EP[i].p.x); } else if (EP[i].st == LEFT) { set<LL>::iterator b = bt.lower_bound(s[EP[i].seg].p1.x); set<LL>::iterator e = bt.upper_bound(s[EP[i].seg].p2.x); cnt += distance(b, e);//bとeの距離(点の数)を加算 } } return cnt; } int n; vector<Segment> segments; Points p; int main() { cin >> n; REP(i, n) { Segment s; cin >> s.p1.x >> s.p1.y >> s.p2.x >> s.p2.y; p.emplace_back(s.p1); p.emplace_back(s.p2); segments.emplace_back(s); } int ans = 0; REP(i, p.size()) { REP(j, p.size()) { if (i == j)continue; int num = 0; REP(k, n) { if (intersect(p[i], p[j], segments[k].p1, segments[k].p2))num++; } ans = max(ans, num); } } cout << ans << endl; system("pause"); }