結果

問題 No.235 めぐるはめぐる (5)
ユーザー noshi91noshi91
提出日時 2018-09-18 08:41:37
言語 C++14
(gcc 12.3.0 + boost 1.83.0)
結果
RE  
実行時間 -
コード長 9,242 bytes
コンパイル時間 678 ms
コンパイル使用メモリ 75,640 KB
実行使用メモリ 20,040 KB
最終ジャッジ日時 2024-07-18 07:54:14
合計ジャッジ時間 3,028 ms
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 RE -
testcase_01 RE -
testcase_02 RE -
権限があれば一括ダウンロードができます

ソースコード

diff #

#include <cassert>
#include <cstddef>
#include <memory>
#include <utility>
#include <vector>

template <class ValueMonoid, class OperatorMonoid, class Modifier>
class lazy_st_trees {
public:
  using value_structure = ValueMonoid;
  using value_type = typename value_structure::value_type;
  using operator_structure = OperatorMonoid;
  using operator_type = typename operator_structure::value_type;
  using modifier = Modifier;

private:
  class node_type {
  public:
    node_type *left, *right, *parent;
    typename lazy_st_trees::value_type value, sum;
    typename lazy_st_trees::operator_type lazy;
    bool reversed; // reverse->lazy
    node_type(node_type *const p)
        : left(p), right(p), parent(p), value(value_structure::identity()),
          sum(value_structure::identity()),
          lazy(operator_structure::identity()), reversed(0) {}
  };

  using container_type = ::std::vector<node_type>;

public:
  using size_type = typename container_type::size_type;

private:
  using pointer = node_type *;
  using const_pointer = const node_type *;

  static void reverse(const pointer ptr) {
    ptr->lazy = operator_structure::reverse(::std::move(ptr->lazy));
    ptr->reversed ^= 1;
  }
  static void push(const pointer ptr) {
    if (ptr->reversed) {
      ptr->reversed = 0;
      ptr->value = value_structure::reverse(::std::move(ptr->value));
      ::std::swap(ptr->left, ptr->right);
      reverse(ptr->left);
      reverse(ptr->right);
    }
    ptr->left->lazy = operator_structure::operation(ptr->left->lazy, ptr->lazy);
    ptr->right->lazy =
        operator_structure::operation(ptr->right->lazy, ptr->lazy);
    ptr->value = modifier::operation(ptr->value, ptr->lazy);
    ptr->lazy = operator_structure::identity();
  }
  void propagate(pointer ptr) {
    pointer prev = nullptr;
    while (ptr != nil()) {
      ::std::swap(ptr->parent, prev);
      ::std::swap(ptr, prev);
    }
    while (prev) {
      push(prev);
      ::std::swap(prev->parent, ptr);
      ::std::swap(prev, ptr);
    }
    nil()->sum = value_structure::identity();
    nil()->lazy = operator_structure::identity();
    nil()->reversed = 0;
  }
  static value_type reflect(const const_pointer ptr) {
    return modifier::operation(
        ptr->reversed ? value_structure::reverse(ptr->sum) : ptr->sum,
        ptr->lazy);
  }
  static void calc(const pointer ptr) {
    ptr->sum = value_structure::operation(
        value_structure::operation(reflect(ptr->left), ptr->value),
        reflect(ptr->right));
  }
  static void rotate_l(const pointer ptr, const pointer ch) {
    ptr->right = ch->left;
    ch->left->parent = ptr;
    calc(ptr);
    ch->left = ptr;
    ptr->parent = ch;
  }
  static void rotate_r(const pointer ptr, const pointer ch) {
    ptr->left = ch->right;
    ch->right->parent = ptr;
    calc(ptr);
    ch->right = ptr;
    ptr->parent = ch;
  }
  static void splay(const pointer ptr) {
    for (pointer x, y = ptr;;) {
      x = ptr->parent;
      if (x->left == y) {
        y = x->parent;
        ptr->parent = y->parent;
        if (y->left == x)
          rotate_r(y, x), rotate_r(x, ptr);
        else if (y->right == x)
          rotate_l(y, ptr), rotate_r(x, ptr);
        else
          return ptr->parent = y, rotate_r(x, ptr);
      } else if (x->right == y) {
        y = x->parent;
        ptr->parent = y->parent;
        if (y->right == x)
          rotate_l(y, x), rotate_l(x, ptr);
        else if (y->left == x)
          rotate_r(y, ptr), rotate_l(x, ptr);
        else
          return ptr->parent = y, rotate_l(x, ptr);
      } else {
        return;
      }
    }
  }
  void expose(const pointer ptr) {
    propagate(ptr);
    pointer x = ptr, prev = nil();
    while (x != nil()) {
      splay(x);
      x->right = prev;
      calc(x);
      prev = x;
      x = x->parent;
    }
    splay(ptr);
    calc(ptr);
  }
  void reroot(const pointer ptr) {
    expose(ptr);
    reverse(ptr);
  }

  container_type nodes;

  pointer get_ptr(const size_type v) { return nodes.data() + v; }
  pointer nil() { return &nodes.back(); }

public:
  lazy_st_trees() : nodes() {}
  explicit lazy_st_trees(const size_type size) : nodes() {
    nodes.reserve(size + 1);
    nodes.resize(size + 1, node_type(nil()));
  }

  bool empty() const { return nodes.empty(); }
  size_type size() const { return nodes.size(); }

  bool connected(const size_type v, const size_type u) {
    assert(v < size());
    assert(u < size());
    expose(get_ptr(v));
    expose(get_ptr(u));
    return nodes[v].parent != nil() || v == u;
  }
  value_type fold_path(const size_type v, const size_type u) {
    assert(v < size());
    assert(u < size());
    assert(connected(v, u));
    reroot(get_ptr(v));
    expose(get_ptr(u));
    return nodes[u].sum;
  }

  void link(const size_type parent, const size_type child) {
    assert(parent < size());
    assert(child < size());
    assert(!connected(parent, child));
    reroot(get_ptr(child));
    nodes[child].parent = get_ptr(parent);
  }
  void cut(const size_type v) {
    assert(v < size());
    expose(get_ptr(v));
    nodes[v].left->parent = nil();
    nodes[v].left = nil();
    nodes[v].sum = nodes[v].value;
  }
  void update_path(const size_type v, const size_type u,
                   const operator_type &value) {
    assert(v < size());
    assert(u < size());
    assert(connected(v, u));
    reroot(get_ptr(v));
    expose(get_ptr(u));
    nodes[u].lazy = value;
  }
  template <class F> void update_vertex(const size_type v, const F &f) {
    assert(v < size());
    expose(get_ptr(v));
    nodes[v].value = f(::std::move(nodes[v].value));
    calc(get_ptr(v));
  }
};

#include <cstdint>

template <::std::uint_fast32_t MODULO> class modint {
	using uint32 = ::std::uint_fast32_t;
	using uint64 = ::std::uint_fast64_t;

public:
	using value_type = uint32;
	uint32 a;
	modint() : a(0) {}
	modint(const uint32 x) : a(x) {}
	modint operator+(const modint &o) const {
		return a + o.a < MODULO ? modint(a + o.a) : modint(a + o.a - MODULO);
	}
	modint operator-(const modint &o) const {
		return modint(a < o.a ? a + MODULO - o.a : a - o.a);
	}
	modint operator*(const modint &o) const {
		return modint(static_cast<uint64>(a) * o.a % MODULO);
	}
	modint operator/(const modint &o) const {
		return modint(static_cast<uint64>(a) * ~o % MODULO);
	}
	modint &operator+=(const modint &o) { return *this = *this + o; }
	modint &operator-=(const modint &o) { return *this = *this - o; }
	modint &operator*=(const modint &o) { return *this = *this * o; }
	modint &operator/=(const modint &o) { return *this = *this / o; }
	modint operator~() const { return pow(MODULO - 2); }
	modint operator-() const { return a ? modint(MODULO - a) : modint(); }
	modint operator++() { return a == MODULO - 1 ? a = 0 : ++a, *this; }
	modint operator--() { return a ? --a : a = MODULO - 1, *this; }
	bool operator==(const modint &o) const { return a == o.a; }
	bool operator!=(const modint &o) const { return a != o.a; }
	bool operator<(const modint &o) const { return a < o.a; }
	bool operator<=(const modint &o) const { return a <= o.a; }
	bool operator>(const modint &o) const { return a > o.a; }
	bool operator>=(const modint &o) const { return a >= o.a; }
	explicit operator bool() const { return a; }
	explicit operator uint32() const { return a; }
	modint pow(uint32 x) const {
		uint64 t = a, u = 1;
		while (x) {
			if (x & 1)
				u = u * t % MODULO;
			t = (t * t) % MODULO;
			x >>= 1;
		}
		return modint(u);
	}
};

#include <algorithm>
#include <cstddef>
#include <limits>
#include <utility>

template <class T, class S = ::std::size_t> class sum_monoid {
public:
	using size_type = S;
	using value_type = ::std::pair<T, size_type>;
	static value_type operation(const value_type &x, const value_type &y) {
		return value_type(x.first + y.first, x.second + y.second);
	}
	static value_type identity() { return value_type(T(0), S(0)); }
	static value_type reverse(const value_type &x) { return x; }
};

template <class T> class plus_monoid {
public:
	using value_type = T;
	static value_type operation(const value_type &x, const value_type &y) {
		return x + y;
	}
	static value_type identity() { return value_type(0); }
	static value_type reverse(const value_type &x) { return x; }
};

template <class T, class S> class sum_plus {
public:
	static ::std::pair<T, S> operation(const ::std::pair<T, S> &x, const T &y){
		return ::std::pair<T, S>(x.first + y * x.second, x.second);
	}
};

#include <cstdio>
#include <vector>

int main() {
	using uint = unsigned int;
	using mint = modint<1000000007>;
	using pm = std::pair<mint, mint>;
	uint n;
	scanf("%u", &n);
	std::vector<pm> s(n);
	for (auto &e : s)
		scanf("%u", &e.first.a);
	for (auto &e : s)
		scanf("%u", &e.second.a);
	lazy_st_trees<sum_monoid<mint, mint>, plus_monoid<mint>, sum_plus<mint, mint>>
		T(n);
	for (uint i = 0;i < n;++i)
		T.update_vertex(i, [&](auto) {return s[i];});
	while (--n) {
		uint a, b;
		scanf("%u%u", &a, &b);
		--a;--b;
		T.link(a, b);
	}
	uint q;
	scanf("%u", &q);
	while (q--) {
		uint t, x, y;
		mint z;
		scanf("%u%u%u", &t, &x, &y);
		--x;--y;
		if (t) {
			printf("%u\n", T.fold_path(x, y).first.a);
		}
		else {
			scanf("%u", &z.a);
			T.update_path(x, y, mint(z));
		}
	}
	return 0;
}
0