結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | kei |
提出日時 | 2018-09-21 16:33:15 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 179 ms / 7,000 ms |
コード長 | 3,655 bytes |
コンパイル時間 | 1,647 ms |
コンパイル使用メモリ | 179,160 KB |
実行使用メモリ | 22,956 KB |
最終ジャッジ日時 | 2024-07-18 08:44:12 |
合計ジャッジ時間 | 4,956 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 1 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,944 KB |
testcase_05 | AC | 1 ms
6,940 KB |
testcase_06 | AC | 3 ms
6,940 KB |
testcase_07 | AC | 3 ms
6,944 KB |
testcase_08 | AC | 3 ms
6,944 KB |
testcase_09 | AC | 4 ms
6,944 KB |
testcase_10 | AC | 1 ms
6,940 KB |
testcase_11 | AC | 2 ms
6,944 KB |
testcase_12 | AC | 7 ms
6,940 KB |
testcase_13 | AC | 6 ms
6,940 KB |
testcase_14 | AC | 7 ms
6,944 KB |
testcase_15 | AC | 6 ms
6,944 KB |
testcase_16 | AC | 6 ms
6,944 KB |
testcase_17 | AC | 68 ms
22,912 KB |
testcase_18 | AC | 58 ms
22,920 KB |
testcase_19 | AC | 64 ms
22,868 KB |
testcase_20 | AC | 59 ms
22,928 KB |
testcase_21 | AC | 60 ms
22,928 KB |
testcase_22 | AC | 61 ms
22,896 KB |
testcase_23 | AC | 65 ms
22,788 KB |
testcase_24 | AC | 176 ms
22,956 KB |
testcase_25 | AC | 179 ms
22,844 KB |
testcase_26 | AC | 172 ms
22,724 KB |
testcase_27 | AC | 139 ms
22,892 KB |
testcase_28 | AC | 172 ms
22,936 KB |
testcase_29 | AC | 168 ms
22,868 KB |
testcase_30 | AC | 168 ms
22,916 KB |
ソースコード
#include "bits/stdc++.h" using namespace std; typedef long long ll; typedef pair<int, int> pii; typedef pair<ll, ll> pll; const int INF = 1e9; const ll LINF = 1e18; template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; } template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; } template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; } template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; } /* <url:https://yukicoder.me/problems/no/206> 問題文============================================================ ================================================================= 解説============================================================= ================================================================ */ /* FFT : reference < https://satanic0258.github.io/snippets/math/FFT.html >*/ /* Example of use // 列a, bを用意 std::vector<int> a, b; // a,bを畳み込んだ結果をcとする std::vector<int> c(FFT::mul(a, b)); */ // Description: 列a[i],b[i]から列c[k]=sum{a[i]*b[k-i]}を生成する.O(NlogN). namespace FFT { typedef long long TYPE; const double pi = std::acos(-1); std::vector<std::complex<double>> tmp; size_t sz = 1; std::vector<std::complex<double>> fft(std::vector<std::complex<double>> a, bool inv = false) { size_t mask = sz - 1, p = 0; for (size_t i = sz >> 1; i >= 1; i >>= 1) { auto& cur = (p & 1) ? tmp : a; auto& nex = (p & 1) ? a : tmp; std::complex<double> e = std::polar(1., 2 * pi * i * (inv ? -1 : 1) / sz); // (絶対値,偏角)の極形式指定 std::complex<double> w = 1; for (size_t j = 0; j < sz; j += i) { for (size_t k = 0; k < i; ++k) { nex[j + k] = cur[((j << 1) & mask) + k] + w * cur[(((j << 1) + i) & mask) + k]; } w *= e; } ++p; } if (p & 1) std::swap(a, tmp); if (inv) for (size_t i = 0; i < sz; ++i) a[i] /= sz; return a; } std::vector<TYPE> mul(std::vector<TYPE> a, std::vector<TYPE> b) { size_t m = a.size() + b.size() - 1; sz = 1; while (m > sz) sz <<= 1; tmp.clear(); tmp.resize(sz); std::vector<std::complex<double>> A(sz), B(sz); for (size_t i = 0; i < a.size(); ++i) A[i].real(a[i]); for (size_t i = 0; i < b.size(); ++i) B[i].real(b[i]); A = fft(A); B = fft(B); for (size_t i = 0; i < sz; ++i) A[i] *= B[i]; A = fft(A, true); a.clear(); a.resize(m); for (size_t i = 0; i < m; ++i) a[i] = std::round(A[i].real()); return a; } }; int main(void) { cin.tie(0); ios_base::sync_with_stdio(false); ll L,M,N; cin >> L >> M >> N; vector<ll> a(N+1),b(N+1); for(int i = 0; i < L;i++){ ll A; cin >> A; a[A] += 1; } for(int i = 0; i < M;i++){ ll B; cin >> B; b[B] += 1; } reverse(b.begin(),b.end()); auto c = FFT::mul(a, b); int Q; cin >> Q; for(int i = 1; i <= Q;i++){ cout << c[N-1+i] << endl; } // cout << c << endl; return 0; }