結果
問題 | No.720 行列のできるフィボナッチ数列道場 (2) |
ユーザー | FF256grhy |
提出日時 | 2018-09-22 00:00:32 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 2 ms / 2,000 ms |
コード長 | 5,846 bytes |
コンパイル時間 | 1,930 ms |
コンパイル使用メモリ | 183,052 KB |
実行使用メモリ | 6,944 KB |
最終ジャッジ日時 | 2024-07-18 08:50:19 |
合計ジャッジ時間 | 2,623 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge1 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,812 KB |
testcase_01 | AC | 2 ms
6,940 KB |
testcase_02 | AC | 2 ms
6,940 KB |
testcase_03 | AC | 2 ms
6,940 KB |
testcase_04 | AC | 2 ms
6,940 KB |
testcase_05 | AC | 2 ms
6,940 KB |
testcase_06 | AC | 2 ms
6,940 KB |
testcase_07 | AC | 2 ms
6,944 KB |
testcase_08 | AC | 2 ms
6,940 KB |
testcase_09 | AC | 2 ms
6,940 KB |
testcase_10 | AC | 2 ms
6,944 KB |
testcase_11 | AC | 2 ms
6,940 KB |
testcase_12 | AC | 2 ms
6,940 KB |
testcase_13 | AC | 1 ms
6,944 KB |
testcase_14 | AC | 2 ms
6,940 KB |
testcase_15 | AC | 1 ms
6,944 KB |
testcase_16 | AC | 2 ms
6,944 KB |
testcase_17 | AC | 1 ms
6,944 KB |
testcase_18 | AC | 2 ms
6,940 KB |
testcase_19 | AC | 1 ms
6,944 KB |
testcase_20 | AC | 2 ms
6,944 KB |
testcase_21 | AC | 2 ms
6,940 KB |
testcase_22 | AC | 2 ms
6,940 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; typedef long long signed int LL; typedef long long unsigned int LU; #define incID(i, l, r) for(int i = (l) ; i < (r); i++) #define incII(i, l, r) for(int i = (l) ; i <= (r); i++) #define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--) #define decII(i, l, r) for(int i = (r) ; i >= (l); i--) #define inc(i, n) incID(i, 0, n) #define inc1(i, n) incII(i, 1, n) #define dec(i, n) decID(i, 0, n) #define dec1(i, n) decII(i, 1, n) #define inII(v, l, r) ((l) <= (v) && (v) <= (r)) #define inID(v, l, r) ((l) <= (v) && (v) < (r)) #define PB push_back #define EB emplace_back #define MP make_pair #define FI first #define SE second #define PQ priority_queue #define ALL(v) v.begin(), v.end() #define RALL(v) v.rbegin(), v.rend() #define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it) #define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it) template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } } template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } } template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } } template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } } template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); } template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; } // ---- ---- template<typename T, int N> struct Matrix { vector<vector<T>> a; Matrix(const vector<vector<T>> & v = { }) { init(v); } void init(const vector<vector<T>> & v) { a = vector<vector<T>>(N, vector<T>(N, 0)); assert(v.size() <= N); inc(i, v.size()) { assert(v[i].size() <= N); inc(j, v[i].size()) { a[i][j] = v[i][j]; } } } vector<T> & operator[](int i) { return a[i]; } Matrix id() { Matrix e; inc(i, N) { e[i][i] = 1; } return e; } Matrix tp() { Matrix b; inc(i, N) { inc(j, N) { b[j][i] = a[i][j]; } } return b; } Matrix & operator+=(const Matrix & b) { inc(i, N) { inc(j, N) { a[i][j] += b.a[i][j]; } } return (*this); } Matrix & operator*=(T b) { inc(i, N) { inc(j, N) { a[i][j] *= b; } } return (*this); } Matrix & operator*=(const Matrix & b) { Matrix c; inc(i, N) { inc(j, N) { inc(k, N) { c[i][j] += a[i][k] * b.a[k][j]; } } } return (*this) = c; } Matrix & operator^=(LU b) { Matrix t[64], c = id(); int D = 64; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { t[i] = (i == 0 ? (*this) : t[i - 1] * t[i - 1]); } inc(i, D) { if((b >> i) & 1) { c *= t[i]; } } return (*this) = c; } Matrix operator+(const Matrix & b) const { Matrix c = a; return c += b; } Matrix operator*( T b) const { Matrix c = a; return c *= b; } Matrix operator*(const Matrix & b) const { Matrix c = a; return c *= b; } Matrix operator^( LU b) const { Matrix c = a; return c ^= b; } }; template<typename T, int N> Matrix<T, N> operator*(T a, const Matrix<T, N> & b) { return b * a; } template<typename T, int N> ostream & operator<<(ostream & os, const Matrix<T, N> & m) { inc(i, N) { inc(j, N) { os << m.a[i][j] << " "; } os << endl; } return os; } // ---- ---- template<int N = 0> class ModInt { private: LL v = 0; static LL m; public: ModInt() { } ModInt(LL vv) { setval(vv); } ModInt & setval(LL vv) { v = vv % m; if(v < 0) { v += m; } return (*this); } static void setmod(LL mm) { m = mm; } LL getval() const { return v; } ModInt & operator+=(const ModInt & b) { return setval(v + b.v); } ModInt & operator-=(const ModInt & b) { return setval(v - b.v); } ModInt & operator*=(const ModInt & b) { return setval(v * b.v); } ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); } ModInt & operator^=( LU b) { return setval(ex(v, b)); } ModInt operator+ ( ) const { return ModInt(+v); } ModInt operator- ( ) const { return ModInt(-v); } ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); } ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); } ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); } ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); } ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); } LL inv() const { LL x = (ex_gcd(v, m).FI + m) % m; assert(v * x % m == 1); return x; } LL ex(LL a, LU b) const { LL D = 64, x[64], y = 1; inc(i, D) { if((b >> i) == 0) { D = i; break; } } inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % m; } inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= m; } } return y; } pair<LL, LL> ex_gcd(LL a, LL b) const { if(b == 0) { return MP(1, 0); } auto p = ex_gcd(b, a % b); return MP(p.SE, p.FI - (a / b) * p.SE); } }; template<int N> LL ModInt<N>::m; template<int N> ModInt<N> operator+(LL a, const ModInt<N> & b) { return b + a; } template<int N> ModInt<N> operator-(LL a, const ModInt<N> & b) { return -b + a; } template<int N> ModInt<N> operator*(LL a, const ModInt<N> & b) { return b * a; } template<int N> ModInt<N> operator/(LL a, const ModInt<N> & b) { return a * b.inv(); } template<int N> istream & operator>>(istream & is, ModInt<N> & b) { LL v; is >> v; b.setval(v); return is; } template<int N> ostream & operator<<(ostream & os, const ModInt<N> & b) { return (os << b.getval()); } // ---- ---- int main() { LL n, m; cin >> n >> m; ModInt<>::setmod(1e9 + 7); typedef Matrix<ModInt<>, 3> MM; MM a = MM { { { 1, 1, 0 }, { 1, 0, 0 }, { 0, 0, 1 } } }, b = MM { { { 1, 0, 0 }, { 0, 1, 1 }, { 0, 0, 1 } } }, c = ((a ^ m) * b) ^ n; cout << c[0][2] << endl; return 0; }