結果

問題 No.271 next_permutation (2)
ユーザー Yang33
提出日時 2018-09-23 21:58:22
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
RE  
(最新)
AC  
(最初)
実行時間 -
コード長 4,700 bytes
コンパイル時間 2,059 ms
コンパイル使用メモリ 173,116 KB
実行使用メモリ 6,820 KB
最終ジャッジ日時 2024-11-26 07:47:35
合計ジャッジ時間 2,729 ms
ジャッジサーバーID
(参考情報)
judge4 / judge3
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 19 RE * 2
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
using VS = vector<string>; using LL = long long;
using VI = vector<int>; using VVI = vector<VI>;
using PII = pair<int, int>; using PLL = pair<LL, LL>;
using VL = vector<LL>; using VVL = vector<VL>;
#define ALL(a) begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
#define debug(x) cerr << #x << ": " << x << endl
const int INF = 1e9; const LL LINF = 1e16;
const LL MOD = 1000000007; const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 }; int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };
/* ----- 2018/09/23 Problem: yukicoder 271 / Link: http://yukicoder.me/problems/no/271 ----- */
/* ------------
---------- */
/* ----------
-------- */
template<typename type>
struct BIT { // 1-index
int N;
int nn;
vector<type> data;
BIT(int n) {
N = n + 1;
data = vector<type>(n + 1, 0);
nn = 1;
while (nn * 2 <= N)nn *= 2;
}
void add(int i, type w) { // a[i] += w
for (int x = i; x <= N; x += x & -x) {
data[x] += w;
}
}
type sum(int i) { // i [1,i]
type ret = 0;
for (int x = i; x > 0; x -= x & -x) {
ret += data[x];
}
return ret;
}
// [l, r]
type sum(int l, int r) {
if (l > r) return 0;
return sum(r) - sum(l - 1);
}
};
template <::std::uint_fast32_t MODULO> class modint {
public:
using uint32 = ::std::uint_fast32_t; using uint64 = ::std::uint_fast64_t; using value_type = uint32; uint32 a; modint() noexcept : a(0) {}modint
        (const uint32 x) noexcept : a(x) {}modint operator+(const modint &o) const noexcept { return a + o.a < MODULO ? modint(a + o.a) : modint(a +
        o.a - MODULO); }modint operator-(const modint &o) const noexcept { return modint(a < o.a ? a + MODULO - o.a : a - o.a); }modint operator
        *(const modint &o) const noexcept { return modint(static_cast<uint64>(a) * o.a % MODULO); }modint operator/(const modint &o) const { return
        modint(static_cast<uint64>(a) * (~o).a % MODULO); }modint &operator+=(const modint &o) noexcept { return *this = *this + o; }modint &operator
        -=(const modint &o) noexcept { return *this = *this - o; }modint &operator*=(const modint &o) noexcept { return *this = *this * o; }modint
        &operator/=(const modint &o) { return *this = *this / o; }modint operator~() const noexcept { return pow(MODULO - 2); }modint operator-()
        const noexcept { return a ? modint(MODULO - a) : *this; }modint operator++() noexcept { return a == MODULO - 1 ? a = 0 : ++a, *this; }modint
        operator--() noexcept { return a ? --a : a = MODULO - 1, *this; }bool operator==(const modint &o) const noexcept { return a == o.a; }bool
        operator!=(const modint &o) const noexcept { return a != o.a; }bool operator<(const modint &o) const noexcept { return a < o.a; }bool
        operator<=(const modint &o) const noexcept { return a <= o.a; }bool operator>(const modint &o) const noexcept { return a > o.a; }bool
        operator>=(const modint &o) const noexcept { return a >= o.a; }explicit operator bool() const noexcept { return a; }explicit operator uint32
        () const noexcept { return a; }modint pow(uint32 x) const noexcept { uint64 t = a, u = 1; while (x) { if (x & 1)u = u * t % MODULO; t = (t *
        t) % MODULO; x >>= 1; } return modint(u); }
uint32 get() const noexcept { return a; }
};
using mint = modint<MOD>;
struct factorialNums {
VL a;
vector<mint> fact;
factorialNums(VL &p):a(SZ(p)),fact(1e5+5) {
BIT<int>bit(SZ(p));
FORR(i, SZ(p) - 1, 0 - 1) {
a[i] = bit.sum(p[i]);
bit.add(p[i], 1);
}
fact[0] = 1;
FOR(i, 1, SZ(fact)) {
fact[i] = mint(i) * fact[i - 1];
}
}
mint add(LL K) {
FOR(i, 0, SZ(a)) {
LL t = K + a[SZ(a) - 1 - i];
a[SZ(a) - 1 - i] = t % (i + 1);
K = t / (i + 1);
}
return mint(K);
}
mint inv() {
mint ret = 0;
mint v = 0;
mint f = 1;
FORR(i, SZ(a) - 1, 0 - 1) {
mint k = SZ(a) - 1 - i;
ret += mint(a[i]) * fact[k.get()] * k*(k - 1) / mint(4);
ret += f * mint(a[i])*mint(a[i] - 1) / mint(2);
ret += mint(a[i])*v;
v += mint(a[i])*f;
f *= SZ(a) - i;
}
return ret;
}
};
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
LL N, K; cin >> N >> K;
VL p(N);
FOR(i, 0, N) {
cin >> p[i];
}
factorialNums fns(p);
mint i1 = fns.inv();
mint m = fns.add(K);
mint i2 = fns.inv();
mint ans = 0;
ans = m * fns.fact[N] * N*(N - 1)/(mint(4)) + i2 - i1;
cout << ans.get() << "\n";
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0