結果
| 問題 |
No.214 素数サイコロと合成数サイコロ (3-Medium)
|
| コンテスト | |
| ユーザー |
kei
|
| 提出日時 | 2018-09-24 14:11:06 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
TLE
(最新)
AC
(最初)
|
| 実行時間 | - |
| コード長 | 4,264 bytes |
| コンパイル時間 | 1,789 ms |
| コンパイル使用メモリ | 175,252 KB |
| 実行使用メモリ | 9,600 KB |
| 最終ジャッジ日時 | 2024-09-22 01:40:38 |
| 合計ジャッジ時間 | 12,499 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 1 TLE * 2 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<ll, ll> pll;
const int INF = 1e9;
const ll LINF = 1e18;
template<class S,class T> ostream& operator << (ostream& out,const pair<S,T>& o){ out << "(" << o.first << "," << o.second << ")"; return out; }
template<class T> ostream& operator << (ostream& out,const vector<T> V){ for(int i = 0; i < V.size(); i++){ out << V[i]; if(i!=V.size()-1) out << " ";} return out; }
template<class T> ostream& operator << (ostream& out,const vector<vector<T> > Mat){ for(int i = 0; i < Mat.size(); i++) { if(i != 0) out << endl; out << Mat[i];} return out; }
template<class S,class T> ostream& operator << (ostream& out,const map<S,T> mp){ out << "{ "; for(auto it = mp.begin(); it != mp.end(); it++){ out << it->first << ":" << it->second; if(mp.size()-1 != distance(mp.begin(),it)) out << ", "; } out << " }"; return out; }
/*
<url:https://yukicoder.me/problems/no/214>
問題文============================================================
=================================================================
解説=============================================================
================================================================
*/
const ll MOD = 1000000007;
/*
kitamasa法
F(x) = Σ_{i=1..N} A(x,i)*F(i)
F(K)をO(N^2 logK)で求める
calc関数で
F_K = A0*F0 + A1*F1 + ... A_K-1*F_K-1 => return F_N
を返す
自分メモ
普段頭の中では以下の形で行列を考えているので、代入値に注意
(A0,A1,....,A_K-1) |F_K-1 |
|... |
|F1 |
|F0 |
*/
struct kitamasa{
vector<ll> mul(const vector<ll>& v1,const vector<ll>& v2,const vector<ll>& A,const ll M){
int N =(int)v1.size();
vector<ll> ret(2*N,0);
for(int i = 0; i < N;i++){
for(int j = 0; j < N;j++){
if(v1[i] == 0 && v2[j] == 0) continue;
(ret[i+j] += v1[i]*v2[j]%M + M)%=M;
}
}
for(int i = 2*N-2; i>= N;i--){
if(ret[i] == 0) continue;
for(int j = 1; j <= N; j++){
if(A[N-j] == 0) continue;
(ret[i-j] += A[N-j]*ret[i]%M + M)%=M;
}
}
ret = vector<ll>(ret.begin(),ret.begin()+N);
return ret;
}
vector<ll> pow(ll N,const vector<ll>& A,const ll M){
int _n = (int)A.size();
vector<ll> ret(_n,0),v(_n,0);
ret[0] = v[1] = 1;
while(N > 0){
if(N&1) ret = this->mul(ret,v,A,M);
v = this->mul(v,v,A,M);
N>>=1;
}
return ret;
}
// F_K = A0*F0 + A1*F1 + ... A_K-1*F_K-1 => return F_N
ll calc(ll N,const vector<ll>& F,const vector<ll>& A,const ll M){
ll ret = 0;
vector<ll> PowA = this->pow(N,A,M);
for(int i = 0; i < F.size();i++) (ret += F[i]*PowA[i]%M + M)%=M;
return ret;
}
};
const ll prime[6] = {2,3,5,7,11,13};
const ll comp[6] = {4,6,8,9,10,12};
ll solve(){
ll res = 0;
ll N,P,C; cin >> N >> P >> C;
ll M = 13*P + 12*C;
vector<vector<ll>> dp(P+C+1,vector<ll>(M+1));
dp[0][0] = 1;
for(int k = 0; k < 6;k++){
for(int m = 0; m < M;m++){
for(int i = 0; i < P;i++){
if(dp[i][m] == 0) continue;
(dp[i+1][m+prime[k]]+=dp[i][m])%=MOD;
}
}
}
for(int k = 0; k < 6;k++){
for(int m = 0; m < M;m++){
for(int i = (int)P; i < P+C;i++){
if(dp[i][m] == 0) continue;
(dp[i+1][m+comp[k]]+=dp[i][m])%=MOD;
}
}
}
auto comb = dp[P+C];
// mat A(M,vec(M));
// for(int i = 1; i <= M;i++) A[0][i-1] = comb[i];
// for(int i = 1; i < M;i++) A[i][i-1] = 1;
// mat B(M,vec(1,1));
//
// mat PowA = pow(A,N+M-1,MOD);
// mat F = mul(PowA,B,MOD);
// res = F[M-1][0];
// F_K = A0*F0 + A1*F1 + ... A_K-1*F_K-1
vector<ll> F(M,1),A(M,0);
for(int i = 0; i < M;i++) A[i] = comb[M-i];
kitamasa kt;
res = kt.calc(N+M-1,F,A,MOD);
return res;
}
int main(void) {
cin.tie(0); ios_base::sync_with_stdio(false);
cout << solve() << endl;
return 0;
}
kei