結果
問題 | No.459 C-VS for yukicoder |
ユーザー | mai |
提出日時 | 2018-09-25 09:49:12 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 79 ms / 2,000 ms |
コード長 | 18,177 bytes |
コンパイル時間 | 3,289 ms |
コンパイル使用メモリ | 243,600 KB |
実行使用メモリ | 19,800 KB |
最終ジャッジ日時 | 2024-10-02 09:54:49 |
合計ジャッジ時間 | 7,005 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,816 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,820 KB |
testcase_05 | AC | 2 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 3 ms
6,816 KB |
testcase_08 | AC | 2 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 2 ms
6,820 KB |
testcase_12 | AC | 2 ms
6,820 KB |
testcase_13 | AC | 2 ms
6,816 KB |
testcase_14 | AC | 2 ms
6,820 KB |
testcase_15 | AC | 3 ms
6,816 KB |
testcase_16 | AC | 3 ms
6,816 KB |
testcase_17 | AC | 2 ms
6,820 KB |
testcase_18 | AC | 2 ms
6,820 KB |
testcase_19 | AC | 2 ms
6,820 KB |
testcase_20 | AC | 2 ms
6,816 KB |
testcase_21 | AC | 79 ms
19,800 KB |
testcase_22 | AC | 68 ms
17,976 KB |
testcase_23 | AC | 67 ms
18,304 KB |
testcase_24 | AC | 29 ms
9,640 KB |
testcase_25 | AC | 14 ms
6,816 KB |
testcase_26 | AC | 10 ms
6,816 KB |
testcase_27 | AC | 11 ms
6,816 KB |
testcase_28 | AC | 15 ms
6,816 KB |
testcase_29 | AC | 22 ms
8,428 KB |
testcase_30 | AC | 9 ms
6,820 KB |
testcase_31 | AC | 17 ms
6,820 KB |
testcase_32 | AC | 4 ms
6,816 KB |
testcase_33 | AC | 21 ms
7,248 KB |
testcase_34 | AC | 23 ms
7,492 KB |
testcase_35 | AC | 4 ms
6,820 KB |
testcase_36 | AC | 20 ms
7,056 KB |
testcase_37 | AC | 4 ms
6,816 KB |
testcase_38 | AC | 21 ms
7,156 KB |
testcase_39 | AC | 4 ms
6,820 KB |
testcase_40 | AC | 16 ms
6,824 KB |
testcase_41 | AC | 4 ms
6,816 KB |
testcase_42 | AC | 13 ms
6,816 KB |
testcase_43 | AC | 20 ms
7,040 KB |
testcase_44 | AC | 5 ms
6,816 KB |
testcase_45 | AC | 4 ms
6,820 KB |
testcase_46 | AC | 4 ms
6,820 KB |
testcase_47 | AC | 3 ms
6,820 KB |
testcase_48 | AC | 20 ms
7,072 KB |
testcase_49 | AC | 4 ms
6,820 KB |
testcase_50 | AC | 20 ms
6,836 KB |
testcase_51 | AC | 4 ms
6,816 KB |
testcase_52 | AC | 10 ms
6,816 KB |
testcase_53 | AC | 5 ms
6,816 KB |
testcase_54 | AC | 22 ms
7,164 KB |
testcase_55 | AC | 6 ms
6,816 KB |
testcase_56 | AC | 14 ms
6,816 KB |
testcase_57 | AC | 4 ms
6,820 KB |
testcase_58 | AC | 22 ms
7,440 KB |
testcase_59 | AC | 6 ms
6,816 KB |
testcase_60 | AC | 10 ms
6,820 KB |
ソースコード
#pragma GCC optimize ("O3") #include "bits/stdc++.h" using namespace std; using ll = long long int; #define debugos cout #define debug(v) {printf("L%d %s > ",__LINE__,#v);debugos<<(v)<<endl;} #define debugv(v) {printf("L%d %s > ",__LINE__,#v);for(auto e:(v)){debugos<<e<<" ";}debugos<<endl;} #define debuga(m,w) {printf("L%d %s > ",__LINE__,#m);for(int x=0;x<(w);x++){debugos<<(m)[x]<<" ";}debugos<<endl;} #define debugaa(m,h,w) {printf("L%d %s >\n",__LINE__,#m);for(int y=0;y<(h);y++){for(int x=0;x<(w);x++){debugos<<(m)[y][x]<<" ";}debugos<<endl;}} #define ALL(v) (v).begin(),(v).end() #define repeat(cnt,l) for(remove_reference<remove_const<decltype(l)>::type>::type cnt=0;(cnt)<(l);++(cnt)) #define rrepeat(cnt,l) for(auto cnt=(l)-1;0<=(cnt);--(cnt)) #define iterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);++(cnt)) #define diterate(cnt,b,e) for(auto cnt=(b);(cnt)!=(e);--(cnt)) const ll MD = 1000000007ll; const long double PI = 3.1415926535897932384626433832795L; inline void assert_call(bool assertion, function<void()> f) { if (!assertion) { cerr << "assertion fault:" << endl; f(); abort(); } } template<typename T1, typename T2> inline ostream& operator <<(ostream &o, const pair<T1, T2> p) { o << '(' << p.first << ':' << p.second << ')'; return o; } template<typename Vec> inline ostream& _ostream_vecprint(ostream& os, const Vec& a) { os << '['; for (const auto& e : a) os << ' ' << e << ' '; os << ']'; return os; } template<typename T> inline ostream& operator<<(ostream& o, const vector<T>& v) { return _ostream_vecprint(o, v); } template<typename T, size_t S> inline ostream& operator<<(ostream& o, const array<T, S>& v) { return _ostream_vecprint(o, v); } template<typename T> inline T& maxset(T& to, const T& val) { return to = max(to, val); } template<typename T> inline T& minset(T& to, const T& val) { return to = min(to, val); } void bye(string s, int code = 0) { cout << s << endl; exit(code); } mt19937_64 randdev(8901016); template<typename T> inline T rand(T l, T h) { return uniform_int_distribution<T>(l, h)(randdev); } template<> inline double rand<double>(double l, double h) { return uniform_real_distribution<double>(l, h)(randdev); } template<> inline float rand<float>(float l, float h) { return uniform_real_distribution<float>(l, h)(randdev); } #if defined(_WIN32) || defined(_WIN64) #define getchar_unlocked _getchar_nolock #define putchar_unlocked _putchar_nolock #elif defined(__GNUC__) #else #define getchar_unlocked getchar #define putchar_unlocked putchar #endif namespace { #define isvisiblechar(c) (0x21<=(c)&&(c)<=0x7E) class MaiScanner { public: template<typename T> void input_integer(T& var) noexcept { var = 0; T sign = 1; int cc = getchar_unlocked(); for (; cc < '0' || '9' < cc; cc = getchar_unlocked()) if (cc == '-') sign = -1; for (; '0' <= cc && cc <= '9'; cc = getchar_unlocked()) var = (var << 3) + (var << 1) + cc - '0'; var = var * sign; } inline int c() noexcept { return getchar_unlocked(); } inline MaiScanner& operator>>(int& var) noexcept { input_integer<int>(var); return *this; } inline MaiScanner& operator>>(long long& var) noexcept { input_integer<long long>(var); return *this; } inline MaiScanner& operator>>(string& var) { int cc = getchar_unlocked(); for (; !isvisiblechar(cc); cc = getchar_unlocked()); for (; isvisiblechar(cc); cc = getchar_unlocked()) var.push_back(cc); return *this; } template<typename IT> void in(IT begin, IT end) { for (auto it = begin; it != end; ++it) *this >> *it; } }; class MaiPrinter { public: template<typename T> void output_integer(T var) noexcept { if (var == 0) { putchar_unlocked('0'); return; } if (var < 0) putchar_unlocked('-'), var = -var; char stack[32]; int stack_p = 0; while (var) stack[stack_p++] = '0' + (var % 10), var /= 10; while (stack_p) putchar_unlocked(stack[--stack_p]); } inline MaiPrinter& operator<<(char c) noexcept { putchar_unlocked(c); return *this; } inline MaiPrinter& operator<<(int var) noexcept { output_integer<int>(var); return *this; } inline MaiPrinter& operator<<(long long var) noexcept { output_integer<long long>(var); return *this; } inline MaiPrinter& operator<<(char* str_p) noexcept { while (*str_p) putchar_unlocked(*(str_p++)); return *this; } inline MaiPrinter& operator<<(const string& str) { const char* p = str.c_str(); const char* l = p + str.size(); while (p < l) putchar_unlocked(*p++); return *this; } template<typename IT> void join(IT begin, IT end, char sep = ' ') { for (bool b = 0; begin != end; ++begin, b = 1) b ? *this << sep << *begin : *this << *begin; } }; } MaiScanner scanner; MaiPrinter printer; class Graph { public: size_t n; vector<vector<int>> vertex_to; Graph(size_t n = 1) :n(n), vertex_to(n) {} inline size_t size() const { return n; } void resize(size_t _n) { vertex_to.resize(n = _n); } void connect(int from, int to) { vertex_to[(size_t)from].emplace_back(to); vertex_to[(size_t)to].emplace_back(from); } }; template <typename T> class SparseTable { public: const int size; vector<int> log2; vector<T> data; vector<T> dp; SparseTable(int size) :size(size), log2(size + 1), data(size) { // for fast calculate log2 for (int i = 2; i <= size; ++i) { log2[i] = log2[i >> 1] + 1; } dp.resize(size*(log2[size] + 1)); } inline T& operator[](size_t i) { return data[i]; } inline T operator[](size_t i)const { return data[i]; } void build() { int l, i, f, b; for (i = 0; i < size; i++) { dp[i] = i; } for (l = 1; (1 << l) <= size; l++) { for (i = 0; i + (1 << l) <= size; i++) { f = dp[i + size * (l - 1)]; b = dp[(i + (1 << (l - 1))) + size * (l - 1)]; dp[i + size * l] = (data[f] <= data[b]) ? f : b; // minimum } } } // range [l,r) int getminrangeIdx(int l, int r) const { int lg = log2[r - l]; int i1 = dp[l + size * lg]; int i2 = dp[r - (1 << lg) + size * lg]; return (data[i1] <= data[i2]) ? i1 : i2; // minimum } }; class DGraph { public: size_t n; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; DGraph(size_t n = 1) :n(n), vertex_to(n), vertex_from(n) {} inline size_t size() const { return n; } void resize(size_t _n) { n = _n; vertex_to.resize(_n); vertex_from.resize(_n); } void connect(int from, int to) { vertex_to[(size_t)from].emplace_back(to); vertex_from[(size_t)to].emplace_back(from); } }; class Unionfind { public: vector<int> data; Unionfind(size_t size) : data(size, -1) { } bool connect(size_t x, size_t y) { x = root(x); y = root(y); if (x != y) { if (data[y] < data[x]) swap(x, y); data[x] += data[y]; data[y] = (int)x; } return x != y; } inline bool same(size_t x, size_t y) { return root(x) == root(y); } inline size_t root(size_t x) { return (size_t)(data[x] < 0 ? x : data[x] = root(data[x])); } inline int size(size_t x) { return -data[root(x)]; } }; class LCATable { vector<int> visited_; vector<int> visited_inv_; SparseTable<int> depth_; public: LCATable(const Graph& g, int root = 0) :visited_(g.n * 2), visited_inv_(g.n), depth_(g.n * 2) { build(g, root); } int _tour_dfs(const Graph& g, int idx, int from = -1, int step = 0, int dep = 0) { depth_[step] = dep; visited_inv_[idx] = step; visited_[step] = idx; for (int to : g.vertex_to[idx]) { if (to == from) continue; step = _tour_dfs(g, to, idx, ++step, dep + 1); depth_[step] = dep; visited_[step] = idx; } return ++step; } inline void build(const Graph& g, int root = 0) { _tour_dfs(g, root); depth_.build(); } inline int operator()(int u, int v) { return visited_inv_[u] <= visited_inv_[v] ? visited_[depth_.getminrangeIdx(visited_inv_[u], visited_inv_[v])] : operator()(v, u); } }; class DGraphF { public: typedef int cap_t; size_t n_; struct Arc { int from, to; // 残量 cap_t left; // 容量 cap_t cap; Arc(int from = 0, int to = 0, cap_t w = 1) :from(from), to(to), left(w), cap(w) {} inline bool operator<(const Arc& a) const { return (left != a.left) ? left < a.left : (left < a.left) | (cap < a.cap) | (from < a.from) | (to < a.to); } inline bool operator==(const Arc& a) const { return (from == a.from) && (to == a.to) && (left == a.left) && (cap == a.cap); } }; vector<vector<int>> vertex_to; vector<vector<int>> vertex_from; vector<Arc> edges; DGraphF(int n = 1) :n_(n), vertex_to(n), vertex_from(n) { } void connect(int from, int to, cap_t left) { vertex_to[(size_t)from].push_back((int)edges.size()); // toto vertex_from[(size_t)to].push_back((int)edges.size()); // fromfrom edges.emplace_back(from, to, left); } inline size_t size() const { return n_; } }; void dinic(DGraphF &graph, vector<DGraphF::cap_t>& result, int i_source, int i_sink) { assert(i_source != i_sink); result.resize(graph.n_); vector<int> dist(graph.n_); queue<int> q; vector<int> flag(graph.n_); static function<DGraphF::cap_t(int, int, DGraphF::cap_t)> _dfs = [&](int u, int i_sink, DGraphF::cap_t mini) { // DAG // TODO: 経路再利用 if (i_sink == u) return mini; if (flag[u]) return (DGraphF::cap_t) - 1; flag[u] = true; DGraphF::cap_t sumw = 0; bool term = true; for (int e : graph.vertex_to[u]) { auto& edge = graph.edges[e]; if (edge.left > 0 && dist[u] > dist[edge.to]) { DGraphF::cap_t w = (mini < 0) ? edge.left : min(edge.left, mini); w = _dfs(edge.to, i_sink, w); if (w == -1) continue; edge.left -= w; result[edge.to] += w; sumw += w; mini -= w; term = false; flag[u] = false; // TODO: 末尾では? if (mini == 0) return sumw; } } for (int e : graph.vertex_from[u]) { auto& edge = graph.edges[e]; if (edge.cap > edge.left && dist[u] > dist[edge.from]) { DGraphF::cap_t w = (mini < 0) ? (edge.cap - edge.left) : min(edge.cap - edge.left, mini); w = _dfs(edge.from, i_sink, w); if (w == -1) continue; edge.left += w; result[edge.to] -= w; sumw += w; mini -= w; term = false; flag[u] = false; if (mini == 0) return sumw; } } return term ? (DGraphF::cap_t)(-1) : sumw; }; for (int distbegin = 0; ; distbegin += (int)graph.n_) { q.emplace(i_sink); // bfsはsinkからsourceへの距離を計算. dist[i_sink] = distbegin + 1; while (!q.empty()) { int v = q.front(); q.pop(); for (int ie : graph.vertex_from[v]) { const auto edge = graph.edges[ie]; if (0 < edge.left && dist[edge.from] <= distbegin) { dist[edge.from] = dist[v] + 1; q.emplace(edge.from); } } for (int ie : graph.vertex_to[v]) { const auto edge = graph.edges[ie]; if (edge.left < edge.cap && dist[edge.to] <= distbegin) { dist[edge.to] = dist[v] + 1; q.emplace(edge.to); } } } fill(flag.begin(), flag.end(), false); if (dist[i_source] <= distbegin) break; else result[i_source] += _dfs(i_source, i_sink, -1); } } // ## 最小流量制限付き最大フロー // + http://snuke.hatenablog.com/entry/2016/07/10/043918 // + http://yukicoder.me/submissions/137248 // + http://yukicoder.me/submissions/143696 // // #### 解説 // 最小流量制限付き最大フローは,普通の最大フローに置き換えることができる. // // 面倒なので,最小流l,最大流hで頂点uから頂点vへ流れる有向辺を(u,v)[l,h]と表記する. // // + s→tな最大最小流量制限付きフローG=(V,E)を考える.最大流量制限付きフローG'を作りたい. // + 新たに頂点S,Tを作る. // + (u,v)[c,c+d]がGに存在するとき,G'に(u,v)[0,d],(u,T)[0,c],(S,v)[0,c]を与える. // + G'に多重辺が出来ることがある. // + S→T,S→t,s→T,s→tの順に最大流を求める.S,Tに隣接する辺に優先して流すため. // + S,Tに隣接する辺が全てemptyになっていれば,条件を満たすフローが存在 // + 流量は(u,v)+(u,T) // // 事前に全体の流量が把握出来るならば, #137248のように,S→s,t→Tの辺を作ってS→Tを流せばよい class FlowMinMax { public: DGraphF graph; const int v_source; // vertex of new source FlowMinMax(int n) :graph(n + 2), v_source(n) {} private: bool _solve_dinic_edge(map<pair<int, int>, int>& result_edge, int i_source, int i_sink) { vector<int> resflow(graph.size(), 0); dinic(graph, resflow, v_source, v_source + 1); dinic(graph, resflow, v_source, i_sink); dinic(graph, resflow, i_source, v_source + 1); dinic(graph, resflow, i_source, i_sink); for (int e : graph.vertex_from[v_source + 1]) { const DGraphF::Arc& a = graph.edges[e]; if (0 < a.left) return false; } int flow; for (int u = 0; u < graph.size() - 2; u++) { for (int ei : graph.vertex_to[u]) { // TODO:最適化の余地あり(らしい) const DGraphF::Arc& a = graph.edges[ei]; // u -> v if (a.to >= graph.size() - 2) { if (0 < a.left) return false; continue; } const DGraphF::Arc& c = graph.edges[ei + 1]; // S -> v if (a.to != c.to) { flow = a.cap - a.left; } else { if (0 < c.left) return false; flow = c.cap + a.cap - c.left - a.left; } if (0 < flow) result_edge[make_pair(u, a.to)] += flow; } } return true; } public: void connect(int from, int to, int w_min, int w_max) { if (w_max == w_min) { graph.connect(v_source, to, w_min); graph.connect(from, v_source + 1, w_min); } else if (w_min == 0) { graph.connect(from, to, w_max - w_min); } else { graph.connect(from, v_source + 1, w_min); graph.connect(from, to, w_max - w_min); graph.connect(v_source, to, w_min); } } inline bool solve_dinic_edge(map<pair<int, int>, int>& result_edge, int i_source, int i_sink) { return _solve_dinic_edge(result_edge, i_source, i_sink); } }; // https://yukicoder.me/submissions/172443 int width, height; int m, n; int field[10010]; int commands[30010]; int main() { int i, j, k; int x, y, a, b; cin >> height >> width >> n; cin.ignore(); int nblocks = 0; // X座標にブロックがいくつ積まれているか、を記録する。 // stringを保持する必要はない。 for (y = 0; y < height; y++) { string s; cin >> s; for (x = 0; x < width; x++) { field[x] += s[x] == '#'; } } for (x = 0; x < width; x++) { nblocks += field[x]; } for (i = 0; i < n; i++) { scanf("%d", commands + i); } // A _ B _ C // | | ----> | | ----> [sink] // [source] -> | | | | // | | | | // |_pack |_field // // A : [1,9] (packは[1,9]個のブロックを持つ) // B : [0,3] (packは3x3の容量を持つ) // C : [#,#] (x列には#個のブロックが積み上がっている) FlowMinMax flow(1 + n + width + 1); const int i_source = 0; const int i_sink = 1; for (i = 0; i < n; i++) { // A edge flow.connect(i_source, 2 + i, 1, 9); int left = commands[i]; for (j = 0; j < 3; j++) { // B edge flow.connect(2 + i, 2 + n + left + j, 0, 3); } } for (x = 0; x < width; x++) { // C edge flow.connect(2 + n + x, i_sink, field[x], field[x]); } //for (Flow::Arrow& ar : flow.flow.arrow){ // if (ar.w_max == 0) continue; // printf("%d -> %d\n",ar.from,ar.to); //} map<pair<int, int>, int> fl; if (!flow.solve_dinic_edge(fl, i_source, i_sink)) { abort(); cout << "warn" << endl; } //debugv(nagare); int hako[3]; for (i = 0; i < n; ++i) { for (j = 0; j < 3; ++j) { hako[j] = fl[make_pair(2 + i, 2 + n + commands[i] + j)]; } for (y = 3; 0 < y; --y) { for (x = 0; x < 3; ++x) { if (y <= hako[x]) { putchar_unlocked('#'); } else { putchar_unlocked('.'); } } putchar_unlocked('\n'); } } return 0; }