結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | mdj982 |
提出日時 | 2018-09-25 13:35:33 |
言語 | C++11 (gcc 13.3.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 3,787 bytes |
コンパイル時間 | 1,976 ms |
コンパイル使用メモリ | 112,344 KB |
実行使用メモリ | 28,148 KB |
最終ジャッジ日時 | 2024-10-04 08:51:18 |
合計ジャッジ時間 | 6,854 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
5,248 KB |
testcase_01 | AC | 2 ms
5,248 KB |
testcase_02 | AC | 1 ms
5,248 KB |
testcase_03 | AC | 1 ms
5,248 KB |
testcase_04 | AC | 2 ms
5,248 KB |
testcase_05 | AC | 2 ms
5,248 KB |
testcase_06 | AC | 7 ms
5,248 KB |
testcase_07 | AC | 8 ms
5,248 KB |
testcase_08 | AC | 7 ms
5,248 KB |
testcase_09 | AC | 8 ms
5,248 KB |
testcase_10 | WA | - |
testcase_11 | AC | 2 ms
5,248 KB |
testcase_12 | WA | - |
testcase_13 | AC | 11 ms
5,248 KB |
testcase_14 | WA | - |
testcase_15 | AC | 12 ms
5,248 KB |
testcase_16 | WA | - |
testcase_17 | AC | 263 ms
28,016 KB |
testcase_18 | AC | 247 ms
27,976 KB |
testcase_19 | AC | 263 ms
28,012 KB |
testcase_20 | AC | 253 ms
28,016 KB |
testcase_21 | AC | 253 ms
27,856 KB |
testcase_22 | AC | 257 ms
28,012 KB |
testcase_23 | AC | 266 ms
28,016 KB |
testcase_24 | WA | - |
testcase_25 | WA | - |
testcase_26 | WA | - |
testcase_27 | AC | 345 ms
28,016 KB |
testcase_28 | WA | - |
testcase_29 | WA | - |
testcase_30 | AC | 381 ms
28,016 KB |
ソースコード
#include <iostream> #include <fstream> #include <iomanip> #include <climits> #include <limits> #include <algorithm> #include <array> #include <vector> #include <deque> #include <queue> #include <list> #include <stack> #include <string> #include <functional> #include <numeric> #include <map> #include <set> #include <cstdlib> #include <bitset> #include <unordered_map> #include <random> #include <cmath> #include <complex> // #include "utiltime.hpp" using namespace std; typedef long long int ll; typedef vector<int> vi; typedef vector<vector<int>> vvi; typedef pair<int, int> P; typedef pair<ll, ll> Pll; typedef vector<ll> vll; typedef vector<vector<ll>> vvll; typedef complex<double> cdouble; const int INFL = (int)1e9; const ll INFLL = (ll)1e18; const double INFD = numeric_limits<double>::infinity(); const double PI = 3.14159265358979323846; #define Loop(i, n) for(int i = 0; i < (int)n; i++) #define Loopll(i, n) for(ll i = 0; i < (ll)n; i++) #define Loop1(i, n) for(int i = 1; i <= (int)n; i++) #define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++) #define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--) #define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--) #define Loopr1(i, n) for(int i = (int)n; i >= 1; i--) #define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--) #define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++) #define printv(vector) Loop(i, vector.size()) { cout << vector[i] << " "; } cout << endl; #define printmx(matrix) Loop(i, matrix.size()) { Loop(j, matrix[i].size()) { cout << matrix[i][j] << " "; } cout << endl; } #define quickio() ios::sync_with_stdio(false); cin.tie(0); #define bitmanip(m,val) static_cast<bitset<(int)m>>(val) ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); } ll floorsqrt(double x) { ll m = (ll)sqrt(x); return m + (m * m <= (ll)(x) ? 0 : -1); } ll ceilsqrt(double x) { ll m = (ll)sqrt(x); return m + ((ll)x <= m * m ? 0 : 1); } ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); } ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); } /*******************************************************/ // a.size() should be 2^m vector<cdouble> FFT(vector<cdouble> a) { int n = int(a.size()); vector<cdouble> f(n); if (n == 1) f = a; else { vector<cdouble> a0(n / 2), a1(n / 2); Loop(i, n / 2) { a0[i] = a[i * 2]; a1[i] = a[i * 2 + 1]; } vector<cdouble> q = FFT(a0); vector<cdouble> r = FFT(a1); Loop(i, n / 2) { cdouble x = exp(cdouble({ 0, 2 * PI * i / n })); f[i] = q[i] + x * r[i]; f[i + n / 2] = q[i] - x * r[i]; } } return f; } // f.size() should be 2^m vector<cdouble> IFFT(vector<cdouble> f) { int n = int(f.size()); vector<cdouble> a(n); if (n == 1) a = f; else { vector<cdouble> q(n / 2), r(n / 2); Loop(i, n / 2) { cdouble x = exp(cdouble({ 0, 2 * PI * i / n })); q[i] = (f[i] + f[i + n / 2]) / 2.0; r[i] = (f[i] - f[i + n / 2]) / (x * 2.0); } vector<cdouble> a0 = IFFT(q); vector<cdouble> a1 = IFFT(r); Loop(i, n / 2) { a[i * 2] = a0[i]; a[i * 2 + 1] = a1[i]; } } return a; } int legal_size_of(int n) { int ret = 1 << (int)log2(n); if (ret < n) ret <<= 1; return ret; } int main() { quickio(); int L, M, N; cin >> L >> M >> N; int n = legal_size_of(N); vector<cdouble> a(n, 0), b(n, 0); Loop(i, L) { int abuf; cin >> abuf; abuf--; a[abuf] = 1; } Loop(i, M) { int bbuf; cin >> bbuf; bbuf--; if (bbuf == 0) b[0] = 1; else b[n - bbuf] = 1; } vector<cdouble> g = FFT(a); vector<cdouble> h = FFT(b); vector<cdouble> gh(n); Loop(i, gh.size()) { gh[i] = g[i] * h[i]; } vector<cdouble> c = IFFT(gh); int q; cin >> q; Loop(i, q) { cout << rndf(c[i].real()) << endl; } }