結果
| 問題 |
No.206 数の積集合を求めるクエリ
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-09-26 02:51:59 |
| 言語 | C++11(廃止可能性あり) (gcc 13.3.0) |
| 結果 |
AC
|
| 実行時間 | 242 ms / 7,000 ms |
| コード長 | 4,316 bytes |
| コンパイル時間 | 1,285 ms |
| コンパイル使用メモリ | 112,964 KB |
| 実行使用メモリ | 15,744 KB |
| 最終ジャッジ日時 | 2024-10-07 23:21:08 |
| 合計ジャッジ時間 | 5,079 ms |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 28 |
ソースコード
#include <iostream>
#include <fstream>
#include <iomanip>
#include <climits>
#include <limits>
#include <algorithm>
#include <array>
#include <vector>
#include <deque>
#include <queue>
#include <list>
#include <stack>
#include <string>
#include <functional>
#include <numeric>
#include <map>
#include <set>
#include <cstdlib>
#include <bitset>
#include <unordered_map>
#include <random>
#include <cmath>
#include <complex>
// #include "utiltime.hpp"
using namespace std;
typedef long long int ll;
typedef vector<int> vi;
typedef vector<vector<int>> vvi;
typedef pair<int, int> P;
typedef pair<ll, ll> Pll;
typedef vector<ll> vll;
typedef vector<vector<ll>> vvll;
typedef complex<double> cdouble;
const int INFL = (int)1e9;
const ll INFLL = (ll)1e18;
const double INFD = numeric_limits<double>::infinity();
const double PI = 3.14159265358979323846;
#define Loop(i, n) for(int i = 0; i < (int)n; i++)
#define Loopll(i, n) for(ll i = 0; i < (ll)n; i++)
#define Loop1(i, n) for(int i = 1; i <= (int)n; i++)
#define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++)
#define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--)
#define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--)
#define Loopr1(i, n) for(int i = (int)n; i >= 1; i--)
#define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--)
#define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++)
#define printv(vector) Loop(i, vector.size()) { cout << vector[i] << " "; } cout << endl;
#define printmx(matrix) Loop(i, matrix.size()) { Loop(j, matrix[i].size()) { cout << matrix[i][j] << " "; } cout << endl; }
#define quickio() ios::sync_with_stdio(false); cin.tie(0);
#define bitmanip(m,val) static_cast<bitset<(int)m>>(val)
ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); }
ll floorsqrt(double x) { ll m = (ll)sqrt(x); return m + (m * m <= (ll)(x) ? 0 : -1); }
ll ceilsqrt(double x) { ll m = (ll)sqrt(x); return m + ((ll)x <= m * m ? 0 : 1); }
ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); }
ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); }
ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); }
/*******************************************************/
namespace Fourier_transform {
vector<cdouble> ws, iws;
inline int bit_reverse(int x, int digit) {
int ret = digit ? x & 1 : 0;
Loop(i, digit - 1) { ret <<= 1; x >>= 1; ret |= x & 1; }
return ret;
}
inline void make_ws(int n) {
if (ws.size() != (n >> 1)) {
ws.resize(n >> 1);
Loop(i, n >> 1) ws[i] = exp(cdouble({ 0, 2 * PI * i / n }));
}
}
inline void make_iws(int n) {
if (iws.size() != (n >> 1)) {
iws.resize(n >> 1);
Loop(i, n >> 1) iws[i] = exp(cdouble({ 0, -2 * PI * i / n }));
}
}
// a.size() should be 2^digit
void FFT(vector<cdouble>& a) {
int n = int(a.size());
int digit = int(rndf(log2(n)));
make_ws(n);
Loop(i, n) {
int j = bit_reverse(i, digit);
if (j > i) swap(a[i], a[j]);
}
Loop(i, digit) {
int j = 0, m = 1 << i, mw = (digit - i - 1);
Loop(group_id, n >> (i + 1)) {
Loop(k, m) {
cdouble x = a[j] + ws[k << mw] * a[j + m];
cdouble y = a[j] - ws[k << mw] * a[j + m];
a[j] = x; a[j + m] = y;
++j;
}
j += m;
}
}
}
// f.size() should be 2^digit
void IFFT(vector<cdouble>& f) {
int n = int(f.size());
int digit = int(rndf(log2(n)));
make_iws(n);
Loopr(i, digit) {
int j = 0, m = 1 << i, mw = (digit - i - 1);
Loop(group_id, n >> (i + 1)) {
Loop(k, m) {
cdouble q = (f[j] + f[j + m]) * 0.5;
cdouble r = (f[j] - f[j + m]) * 0.5 * iws[k << mw];
f[j] = q; f[j + m] = r;
++j;
}
j += m;
}
}
Loop(i, n) {
int j = bit_reverse(i, digit);
if (j > i) swap(f[i], f[j]);
}
}
int legal_size_of(int n) {
int ret = 1 << (int)log2(n);
if (ret < n) ret <<= 1;
return ret;
}
}
using namespace Fourier_transform;
int main() {
quickio();
int L, M, N; cin >> L >> M >> N;
int n = legal_size_of(N * 2 - 1);
vector<cdouble> a(n, 0), b(n, 0);
Loop(i, L) {
int abuf; cin >> abuf;
abuf--;
a[abuf] = 1;
}
Loop(i, M) {
int bbuf; cin >> bbuf;
bbuf--;
if (bbuf == 0) b[0] = 1;
else b[n - bbuf] = 1;
}
FFT(a);
FFT(b);
Loop(i, n) a[i] *= b[i];
IFFT(a);
int q; cin >> q;
Loop(i, q) {
cout << rndf(a[i].real()) << endl;
}
}