結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | mdj982 |
提出日時 | 2018-09-27 06:13:15 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 776 ms / 7,000 ms |
コード長 | 8,855 bytes |
コンパイル時間 | 1,764 ms |
コンパイル使用メモリ | 123,840 KB |
実行使用メモリ | 17,648 KB |
最終ジャッジ日時 | 2024-10-12 04:24:50 |
合計ジャッジ時間 | 13,228 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 3 ms
6,816 KB |
testcase_03 | AC | 1 ms
6,820 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 16 ms
6,816 KB |
testcase_07 | AC | 16 ms
6,820 KB |
testcase_08 | AC | 16 ms
6,820 KB |
testcase_09 | AC | 16 ms
6,816 KB |
testcase_10 | AC | 2 ms
6,816 KB |
testcase_11 | AC | 3 ms
6,816 KB |
testcase_12 | AC | 20 ms
6,816 KB |
testcase_13 | AC | 19 ms
6,816 KB |
testcase_14 | AC | 19 ms
6,820 KB |
testcase_15 | AC | 19 ms
6,820 KB |
testcase_16 | AC | 19 ms
6,816 KB |
testcase_17 | AC | 656 ms
17,520 KB |
testcase_18 | AC | 650 ms
17,648 KB |
testcase_19 | AC | 666 ms
17,520 KB |
testcase_20 | AC | 615 ms
17,516 KB |
testcase_21 | AC | 646 ms
17,648 KB |
testcase_22 | AC | 641 ms
17,644 KB |
testcase_23 | AC | 663 ms
17,516 KB |
testcase_24 | AC | 759 ms
17,524 KB |
testcase_25 | AC | 766 ms
17,524 KB |
testcase_26 | AC | 776 ms
17,648 KB |
testcase_27 | AC | 716 ms
17,520 KB |
testcase_28 | AC | 764 ms
17,520 KB |
testcase_29 | AC | 772 ms
17,648 KB |
testcase_30 | AC | 747 ms
17,648 KB |
ソースコード
#include <iostream> #include <fstream> #include <iomanip> #include <climits> #include <limits> #include <algorithm> #include <array> #include <vector> #include <deque> #include <queue> #include <list> #include <stack> #include <string> #include <functional> #include <numeric> #include <map> #include <set> #include <cstdlib> #include <bitset> #include <unordered_map> #include <random> #include <cmath> #include <complex> // #include "utiltime.hpp" using namespace std; typedef long long int ll; typedef vector<int> vi; typedef vector<vector<int>> vvi; typedef pair<int, int> P; typedef pair<ll, ll> Pll; typedef vector<ll> vll; typedef vector<vector<ll>> vvll; typedef complex<double> cdouble; const int INFL = (int)1e9; const ll INFLL = (ll)1e18; const double INFD = numeric_limits<double>::infinity(); const double PI = 3.14159265358979323846; #define Loop(i, n) for(int i = 0; i < (int)n; i++) #define Loopll(i, n) for(ll i = 0; i < (ll)n; i++) #define Loop1(i, n) for(int i = 1; i <= (int)n; i++) #define Loopll1(i, n) for(ll i = 1; i <= (ll)n; i++) #define Loopr(i, n) for(int i = (int)n - 1; i >= 0; i--) #define Looprll(i, n) for(ll i = (ll)n - 1; i >= 0; i--) #define Loopr1(i, n) for(int i = (int)n; i >= 1; i--) #define Looprll1(i, n) for(ll i = (ll)n; i >= 1; i--) #define Loopitr(itr, container) for(auto itr = container.begin(); itr != container.end(); itr++) #define printv(vector) Loop(i, vector.size()) { cout << vector[i] << " "; } cout << endl; #define printmx(matrix) Loop(i, matrix.size()) { Loop(j, matrix[i].size()) { cout << matrix[i][j] << " "; } cout << endl; } #define quickio() ios::sync_with_stdio(false); cin.tie(0); #define readfile(filename) ifstream in(filename); cin.rdbuf(in.rdbuf()); #define bitmanip(m,val) static_cast<bitset<(int)m>>(val) ll rndf(double x) { return (ll)(x + (x >= 0 ? 0.5 : -0.5)); } ll floorsqrt(double x) { ll m = (ll)sqrt(x); return m + (m * m <= (ll)(x) ? 0 : -1); } ll ceilsqrt(double x) { ll m = (ll)sqrt(x); return m + ((ll)x <= m * m ? 0 : 1); } ll rnddiv(ll a, ll b) { return (a / b + (a % b * 2 >= b ? 1 : 0)); } ll ceildiv(ll a, ll b) { return (a / b + (a % b == 0 ? 0 : 1)); } ll gcd(ll m, ll n) { if (n == 0) return m; else return gcd(n, m % n); } /*******************************************************/ namespace mod_op { ll MOD = (ll)1e9 + 7; class modll { private: ll val; inline ll modify(ll x) { ll ret = x % MOD; if (ret < 0) ret += MOD; return ret; } inline ll inv(ll x) { if (x == 0) return 1 / x; else if (x == 1) return 1; else return modify(inv(MOD % x) * modify(-MOD / x)); } public: modll(ll init = 0) { val = modify(init); return; } modll(const modll& another) { val = another.val; return; } inline modll& operator=(const modll &another) { val = another.val; return *this; } inline modll operator+(const modll &x) { return modify(val + x.val); } inline modll operator-(const modll &x) { return modify(val - x.val); } inline modll operator*(const modll &x) { return modify(val * x.val); } inline modll operator/(const modll &x) { return modify(val * inv(x.val)); } inline modll& operator+=(const modll &x) { val = modify(val + x.val); return *this; } inline modll& operator-=(const modll &x) { val = modify(val - x.val); return *this; } inline modll& operator*=(const modll &x) { val = modify(val * x.val); return *this; } inline modll& operator/=(const modll &x) { val = modify(val * inv(x.val)); return *this; } inline bool operator==(const modll &x) { return val == x.val; } inline bool operator!=(const modll &x) { return val != x.val; } friend inline istream& operator >> (istream &is, modll& x) { is >> x.val; return is; } friend inline ostream& operator << (ostream &os, const modll& x) { os << x.val; return os; } ll get_val() { return val; } }; modll pow(modll n, ll p) { modll ret; if (p == 0) ret = 1; else if (p == 1) ret = n; else { ret = pow(n, p / 2); ret *= ret; if (p % 2 == 1) ret *= n; } return ret; } vector<modll> facts; inline void make_facts(int n) { if (facts.empty()) facts.push_back(modll(1)); for (int i = (int)facts.size(); i <= n; ++i) facts.push_back(modll(facts.back() * (ll)i)); return; } vector<modll> ifacts; vector<modll> invs; inline void make_invs(int n) { if (invs.empty()) { invs.push_back(modll(0)); invs.push_back(modll(1)); } for (int i = (int)invs.size(); i <= n; ++i) { // because 0 = MOD = kq + r, 1/k = -q/r invs.push_back(invs[(int)MOD % i] * ((int)MOD - (int)MOD / i)); } return; } inline void make_ifacts(int n) { make_invs(n); if (ifacts.empty()) ifacts.push_back(modll(1)); for (int i = (int)ifacts.size(); i <= n; ++i) ifacts.push_back(modll(ifacts.back() * invs[i])); return; } //nCr modll combination(ll n, ll r) { if (n >= r && r >= 0) { modll ret; make_facts((int)n); make_ifacts((int)n); ret = facts[(unsigned)n] * ifacts[(unsigned)r] * ifacts[(unsigned)(n - r)]; return ret; } else return 0; } modll get_fact(ll n) { make_facts((int)n); return facts[(int)n]; } modll get_ifact(ll n) { make_ifacts((int)n); return ifacts[(int)n]; } //log_a(b), if x does not exist, return -1 ll disc_log(modll a, modll b) { ll ret = -1; ll m = ceilsqrt(MOD); unordered_map<ll, ll> mp; modll x = 1; Loop(i, m) { mp[x.get_val()] = i; x *= a; } x = modll(1) / pow(a, m); modll k = b; Loop(i, m) { if (mp.find(k.get_val()) == mp.end()) k *= x; else { ret = i * m + mp[k.get_val()]; break; } } return ret; } } using namespace mod_op; typedef vector<modll> vmodll; typedef vector<vector<modll>> vvmodll; namespace number_theoretic_transform { ll mod_backup; modll min_omega; int min_omega_depth; void make_base(int mode) { mod_backup = MOD; switch (mode) { case 0: MOD = 167772161; min_omega = 17; min_omega_depth = 25; break; case 1: MOD = 469762049; min_omega = 30; min_omega_depth = 26; break; default: MOD = 1224736769; min_omega = 149; min_omega_depth = 24; } } void recover_base() { MOD = mod_backup; } vector<modll> omegas, iomegas; inline int bit_reverse(int x, int digit) { int ret = digit ? x & 1 : 0; Loop(i, digit - 1) { ret <<= 1; x >>= 1; ret |= x & 1; } return ret; } inline void make_omegas(int n) { if (omegas.size() != n) { omegas.resize(n); modll omega = pow(min_omega, (1 << min_omega_depth) / n); Loop(i, n) { if (i == 0) omegas[i] = 1; else omegas[i] = omegas[i - 1] * omega; } } } inline void make_iomegas(int n) { if (iomegas.size() != n) { iomegas.resize(n); modll iomega = modll(1) / pow(min_omega, (1 << min_omega_depth) / n); Loop(i, n) { if (i == 0) iomegas[i] = 1; else iomegas[i] = iomegas[i - 1] * iomega; } } } // a.size() should be 2^digit vector<modll> NTT(const vector<modll> a, int mode = 0) { int n = int(a.size()); int digit = int(rndf(log2(n))); vector<modll> ret = a; make_omegas(n); Loop(i, n) { int j = bit_reverse(i, digit); if (j > i) swap(ret[i], ret[j]); } Loop(i, digit) { int j = 0, m = 1 << i, mw = (digit - i - 1); Loop(group_id, n >> (i + 1)) { Loop(k, m) { modll x = ret[j] + omegas[k << mw] * ret[j + m]; modll y = ret[j] - omegas[k << mw] * ret[j + m]; ret[j] = x; ret[j + m] = y; ++j; } j += m; } } return ret; } // f.size() should be 2^digit vector<modll> INTT(const vector<modll>& f, int mode = 0) { int n = int(f.size()); int digit = int(rndf(log2(n))); vector<modll> ret = f; make_iomegas(n); Loopr(i, digit) { int j = 0, m = 1 << i, mw = (digit - i - 1); Loop(group_id, n >> (i + 1)) { Loop(k, m) { modll q = (ret[j] + ret[j + m]) / 2; modll r = (ret[j] - ret[j + m]) * iomegas[k << mw] / 2; ret[j] = q; ret[j + m] = r; ++j; } j += m; } } Loop(i, n) { int j = bit_reverse(i, digit); if (j > i) swap(ret[i], ret[j]); } return ret; } // a.size() = b.size() should be 2^digit vector<modll> mul_convolution(const vector<modll> &a, const vector<modll> &b) { int n = int(a.size()); vector<modll> ret; make_base(0); vector<modll> g = NTT(a), h = NTT(b); Loop(i, n) g[i] *= h[i]; ret = INTT(g); recover_base(); return ret; } int legal_size_of(int n) { int ret = 1 << (int)log2(n); if (ret < n) ret <<= 1; return ret; } } using namespace number_theoretic_transform; int main() { quickio(); int L, M, N; cin >> L >> M >> N; int n = legal_size_of(N * 2); vector<modll> a(n, 0), b(n, 0); Loop(i, L) { int abuf; cin >> abuf; abuf--; a[N - 1 - abuf] = 1; } Loop(i, M) { int bbuf; cin >> bbuf; bbuf--; b[bbuf] = 1; } vector<modll> c = mul_convolution(a, b); int q; cin >> q; reverse(c.begin(), c.begin() + N); Loop(i, q) { cout << c[i] << endl; } }