結果
| 問題 |
No.303 割れません
|
| ユーザー |
Yang33
|
| 提出日時 | 2018-09-29 23:04:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 11,913 bytes |
| コンパイル時間 | 2,316 ms |
| コンパイル使用メモリ | 191,244 KB |
| 実行使用メモリ | 27,252 KB |
| 最終ジャッジ日時 | 2024-10-12 08:51:37 |
| 合計ジャッジ時間 | 21,401 ms |
|
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | WA * 1 TLE * 1 -- * 12 |
ソースコード
#include "bits/stdc++.h"
using namespace std;
using VS = vector<string>; using LL = long long;
using VI = vector<int>; using VVI = vector<VI>;
using PII = pair<int, int>; using PLL = pair<LL, LL>;
using VL = vector<LL>; using VVL = vector<VL>;
#define ALL(a) begin((a)),end((a))
#define RALL(a) (a).rbegin(), (a).rend()
#define SZ(a) int((a).size())
#define SORT(c) sort(ALL((c)))
#define RSORT(c) sort(RALL((c)))
#define UNIQ(c) (c).erase(unique(ALL((c))), end((c)))
#define FOR(i, s, e) for (int(i) = (s); (i) < (e); (i)++)
#define FORR(i, s, e) for (int(i) = (s); (i) > (e); (i)--)
#define debug(x) cerr << #x << ": " << x << endl
const int INF = 1e9; const LL LINF = 1e16;
const LL MOD = 1000000007; const double PI = acos(-1.0);
int DX[8] = { 0, 0, 1, -1, 1, 1, -1, -1 }; int DY[8] = { 1, -1, 0, 0, 1, -1, 1, -1 };
/* ----- 2018/09/29 Problem: yukicoder 303 / Link: http://yukicoder.me/problems/no/303 ----- */
/* ------問題------
-----問題ここまで----- */
/* -----解説等-----
----解説ここまで---- */
const int base = 1000000000; //blockの幅
const int base_digits = 9; //
struct BigInt {
vector<int> a;
int sign;
BigInt() :
sign(1) {
}
BigInt(long long v) {
*this = v;
}
BigInt(const string &s) {
read(s);
}
void operator=(const BigInt &v) {
sign = v.sign;
a = v.a;
}
void operator=(long long v) {
sign = 1;
if (v < 0)
sign = -1, v = -v;
a.clear();
for (; v > 0; v = v / base)
a.push_back(v % base);
}
BigInt operator+(const BigInt &v) const {
if (sign == v.sign) {
BigInt res = v;
for (int i = 0, carry = 0; i < (int)max(a.size(), v.a.size()) || carry; ++i) {
if (i == (int)res.a.size())
res.a.push_back(0);
res.a[i] += carry + (i < (int)a.size() ? a[i] : 0);
carry = res.a[i] >= base;
if (carry)
res.a[i] -= base;
}
return res;
}
return *this - (-v);
}
BigInt operator-(const BigInt &v) const {
if (sign == v.sign) {
if (abs() >= v.abs()) {
BigInt res = *this;
for (int i = 0, carry = 0; i < (int)v.a.size() || carry; ++i) {
res.a[i] -= carry + (i < (int)v.a.size() ? v.a[i] : 0);
carry = res.a[i] < 0;
if (carry)
res.a[i] += base;
}
res.trim();
return res;
}
return -(v - *this);
}
return *this + (-v);
}
void operator*=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = 0, carry = 0; i < (int)a.size() || carry; ++i) {
if (i == (int)a.size())
a.push_back(0);
long long cur = a[i] * (long long)v + carry;
carry = (int)(cur / base);
a[i] = (int)(cur % base);
//asm("divl %%ecx" : "=a"(carry), "=d"(a[i]) : "A"(cur), "c"(base));
}
trim();
}
BigInt operator*(int v) const {
BigInt res = *this;
res *= v;
return res;
}
friend pair<BigInt, BigInt> divmod(const BigInt &a1, const BigInt &b1) {
int norm = base / (b1.a.back() + 1);
BigInt a = a1.abs() * norm;
BigInt b = b1.abs() * norm;
BigInt q, r;
q.a.resize(a.a.size());
for (int i = a.a.size() - 1; i >= 0; i--) {
r *= base;
r += a.a[i];
int s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
int s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
int d = ((long long)base * s1 + s2) / b.a.back();
r -= b * d;
while (r < 0)
r += b, --d;
q.a[i] = d;
}
q.sign = a1.sign * b1.sign;
r.sign = a1.sign;
q.trim();
r.trim();
return make_pair(q, r / norm);
}
friend BigInt sqrt(const BigInt &a1) {
BigInt a = a1;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
int n = a.a.size();
int firstDigit = (int)sqrt((double)a.a[n - 1] * base + a.a[n - 2]);
int norm = base / (firstDigit + 1);
a *= norm;
a *= norm;
while (a.a.empty() || a.a.size() % 2 == 1)
a.a.push_back(0);
BigInt r = (long long)a.a[n - 1] * base + a.a[n - 2];
firstDigit = (int)sqrt((double)a.a[n - 1] * base + a.a[n - 2]);
int q = firstDigit;
BigInt res;
for (int j = n / 2 - 1; j >= 0; j--) {
for (; ; --q) {
BigInt r1 = (r - (res * 2 * base + q) * q) * base * base + (j > 0 ? (long long)a.a[2 * j - 1] * base + a.a[2 * j - 2] : 0);
if (r1 >= 0) {
r = r1;
break;
}
}
res *= base;
res += q;
if (j > 0) {
int d1 = res.a.size() + 2 < r.a.size() ? r.a[res.a.size() + 2] : 0;
int d2 = res.a.size() + 1 < r.a.size() ? r.a[res.a.size() + 1] : 0;
int d3 = res.a.size() < r.a.size() ? r.a[res.a.size()] : 0;
q = ((long long)d1 * base * base + (long long)d2 * base + d3) / (firstDigit * 2);
}
}
res.trim();
return res / norm;
}
BigInt operator/(const BigInt &v) const {
return divmod(*this, v).first;
}
BigInt operator%(const BigInt &v) const {
return divmod(*this, v).second;
}
void operator/=(int v) {
if (v < 0)
sign = -sign, v = -v;
for (int i = (int)a.size() - 1, rem = 0; i >= 0; --i) {
long long cur = a[i] + rem * (long long)base;
a[i] = (int)(cur / v);
rem = (int)(cur % v);
}
trim();
}
BigInt operator/(int v) const {
BigInt res = *this;
res /= v;
return res;
}
int operator%(int v) const {
if (v < 0)
v = -v;
int m = 0;
for (int i = a.size() - 1; i >= 0; --i)
m = (a[i] + m * (long long)base) % v;
return m * sign;
}
void operator+=(const BigInt &v) {
*this = *this + v;
}
void operator-=(const BigInt &v) {
*this = *this - v;
}
void operator*=(const BigInt &v) {
*this = *this * v;
}
void operator/=(const BigInt &v) {
*this = *this / v;
}
bool operator<(const BigInt &v) const {
if (sign != v.sign)
return sign < v.sign;
if (a.size() != v.a.size())
return a.size() * sign < v.a.size() * v.sign;
for (int i = a.size() - 1; i >= 0; i--)
if (a[i] != v.a[i])
return a[i] * sign < v.a[i] * sign;
return false;
}
bool operator>(const BigInt &v) const {
return v < *this;
}
bool operator<=(const BigInt &v) const {
return !(v < *this);
}
bool operator>=(const BigInt &v) const {
return !(*this < v);
}
bool operator==(const BigInt &v) const {
return !(*this < v) && !(v < *this);
}
bool operator!=(const BigInt &v) const {
return *this < v || v < *this;
}
void trim() {
while (!a.empty() && !a.back())
a.pop_back();
if (a.empty())
sign = 1;
}
bool isZero() const {
return a.empty() || (a.size() == 1 && !a[0]);
}
BigInt operator-() const {
BigInt res = *this;
res.sign = -sign;
return res;
}
BigInt abs() const {
BigInt res = *this;
res.sign *= res.sign;
return res;
}
long long longValue() const {
long long res = 0;
for (int i = a.size() - 1; i >= 0; i--)
res = res * base + a[i];
return res * sign;
}
friend BigInt gcd(const BigInt &a, const BigInt &b) {
return b.isZero() ? a : gcd(b, a % b);
}
friend BigInt lcm(const BigInt &a, const BigInt &b) {
return a / gcd(a, b) * b;
}
void read(const string &s) {
sign = 1;
a.clear();
int pos = 0;
while (pos < (int)s.size() && (s[pos] == '-' || s[pos] == '+')) {
if (s[pos] == '-')
sign = -sign;
++pos;
}
for (int i = s.size() - 1; i >= pos; i -= base_digits) {
int x = 0;
for (int j = max(pos, i - base_digits + 1); j <= i; j++)
x = x * 10 + s[j] - '0';
a.push_back(x);
}
trim();
}
friend istream& operator>>(istream &stream, BigInt &v) {
string s;
stream >> s;
v.read(s);
return stream;
}
friend ostream& operator<<(ostream &stream, const BigInt &v) {
if (v.sign == -1 && !v.isZero())
stream << '-';
stream << (v.a.empty() ? 0 : v.a.back());
for (int i = (int)v.a.size() - 2; i >= 0; --i)
stream << setw(base_digits) << setfill('0') << v.a[i];
return stream;
}
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<long long> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int)p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
long long cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int)a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back(int(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int)cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
typedef vector<long long> vll;
static vll karatsubaMultiply(const vll &a, const vll &b) {
int n = a.size();
vll res(n + n);
if (n <= 32) {
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
res[i + j] += a[i] * b[j];
return res;
}
int k = n >> 1;
vll a1(a.begin(), a.begin() + k);
vll a2(a.begin() + k, a.end());
vll b1(b.begin(), b.begin() + k);
vll b2(b.begin() + k, b.end());
vll a1b1 = karatsubaMultiply(a1, b1);
vll a2b2 = karatsubaMultiply(a2, b2);
for (int i = 0; i < k; i++)
a2[i] += a1[i];
for (int i = 0; i < k; i++)
b2[i] += b1[i];
vll r = karatsubaMultiply(a2, b2);
for (int i = 0; i < (int)a1b1.size(); i++)
r[i] -= a1b1[i];
for (int i = 0; i < (int)a2b2.size(); i++)
r[i] -= a2b2[i];
for (int i = 0; i < (int)r.size(); i++)
res[i + k] += r[i];
for (int i = 0; i < (int)a1b1.size(); i++)
res[i] += a1b1[i];
for (int i = 0; i < (int)a2b2.size(); i++)
res[i + n] += a2b2[i];
return res;
}
BigInt operator*(const BigInt &v) const {
vector<int> a6 = convert_base(this->a, base_digits, 6);
vector<int> b6 = convert_base(v.a, base_digits, 6);
vll a(a6.begin(), a6.end());
vll b(b6.begin(), b6.end());
while (a.size() < b.size())
a.push_back(0);
while (b.size() < a.size())
b.push_back(0);
while (a.size() & (a.size() - 1))
a.push_back(0), b.push_back(0);
vll c = karatsubaMultiply(a, b);
BigInt res;
res.sign = sign * v.sign;
for (int i = 0, carry = 0; i < (int)c.size(); i++) {
long long cur = c[i] + carry;
res.a.push_back((int)(cur % 1000000));
carry = (int)(cur / 1000000);
}
res.a = convert_base(res.a, 6, base_digits);
res.trim();
return res;
}
friend BigInt pow(const BigInt &x, BigInt a) {
BigInt res = 1;
BigInt e = x;
for (; !a.isZero(); a /= BigInt(2)) {
if (a % 2 == 1) {
res *= e;
}
e *= e;
}
return res;
}
friend BigInt powmod(const BigInt &x, BigInt a, const BigInt &mod) {
BigInt X = x % mod;
BigInt res = 1;
BigInt e = X;
for (; !a.isZero(); a /= BigInt(2)) {
if (a % 2 == 1) {
res = (res*e) % mod;
}
e = (e*e) % mod;
}
return res % mod;
}
// 拡張ユークリッド互除法 a*x+b*y=1となる整数解x,yを求める
// 返却値: gcd(a,b)
friend BigInt extgcd(BigInt a, BigInt b, BigInt &x, BigInt &y) {
BigInt gcd_ = a;
if (b != 0) {
gcd_ = extgcd(b, a%b, y, x);
y -= (a / b)*x;
}
else {
x = 1; y = 0;
}
return gcd_;
}
};
//a*B
template<typename T>
vector<vector<T>> mul(vector<vector<T>> &A, vector<vector<T>> &B) {
vector<vector<T>> C(A.size(), vector<T>(B[0].size()));
FOR(i, 0, (int)A.size()) {
FOR(k, 0, (int)B.size()) {
if (!A[i][k].isZero()) {// 0のときはやらない
FOR(j, 0, (int)B[0].size()) {
C[i][j] = (C[i][j] + (A[i][k]) * (B[k][j]));
}
}
}
}
return C;
}
//a^N べき乗法 logN
template<typename T>
vector<vector<T>> pow(vector<vector<T>> A, long long n) {
vector<vector<T>> B((int)A.size(), vector<T>((int)A.size()));
FOR(i, 0, (int)A.size()) {
B[i][i] = 1;
}
while (n > 0) {
if (n & 1) B = mul(B, A);
A = mul(A, A);
n >>= 1;
}
return B;
}
BigInt fib(LL n) {
n--;
vector<vector<BigInt>>mat(2, vector<BigInt>(2, 1));
mat[1][1] = 0;
mat = pow<BigInt>(mat, n);
return mat[0][0];
}
int main() {
cin.tie(0);
ios_base::sync_with_stdio(false);
LL N; cin >> N;
if (N == 2) {
cout << 3 << endl;
cout << "INF" << endl;
}
else {
cout << N << endl;
if (N & 1) {
cout << fib(N) << endl;
}
else {
auto divfib = fib(N / 2);
cout << fib(N) - divfib * divfib << endl;
}
}
return 0;
}
Yang33