結果

問題 No.741 AscNumber(Easy)
ユーザー FF256grhyFF256grhy
提出日時 2018-10-05 21:44:54
言語 C++14
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 208 ms / 2,000 ms
コード長 4,000 bytes
コンパイル時間 1,392 ms
コンパイル使用メモリ 168,672 KB
実行使用メモリ 81,664 KB
最終ジャッジ日時 2024-10-12 13:01:26
合計ジャッジ時間 6,885 ms
ジャッジサーバーID
(参考情報)
judge / judge2
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 55
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include <bits/stdc++.h>
using namespace std;
typedef long long signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(int i = (l) ; i < (r); i++)
#define incII(i, l, r) for(int i = (l) ; i <= (r); i++)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--)
#define decII(i, l, r) for(int i = (r) ; i >= (l); i--)
#define inc(i, n) incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n) decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define inID(v, l, r) ((l) <= (v) && (v) < (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define PQ priority_queue
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it)
#define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it)
template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
// ---- ----
template<int N = 0> class ModInt {
private:
LL v = 0;
static LL m;
public:
ModInt() { }
ModInt(LL vv) { setval(vv); }
ModInt & setval(LL vv) { v = vv % m; if(v < 0) { v += m; } return (*this); }
static void setmod(LL mm) { m = mm; }
LL getval() const { return v; }
ModInt & operator+=(const ModInt & b) { return setval(v + b.v); }
ModInt & operator-=(const ModInt & b) { return setval(v - b.v); }
ModInt & operator*=(const ModInt & b) { return setval(v * b.v); }
ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); }
ModInt & operator^=( LU b) { return setval(ex(v, b)); }
ModInt operator+ ( ) const { return ModInt(+v); }
ModInt operator- ( ) const { return ModInt(-v); }
ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); }
ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); }
ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); }
ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); }
ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); }
LL inv() const {
LL x = (ex_gcd(v, m).FI + m) % m;
assert(v * x % m == 1);
return x;
}
LL ex(LL a, LU b) const {
LL D = 64, x[64], y = 1;
inc(i, D) { if((b >> i) == 0) { D = i; break; } }
inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % m; }
inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= m; } }
return y;
}
pair<LL, LL> ex_gcd(LL a, LL b) const {
if(b == 0) { return MP(1, 0); }
auto p = ex_gcd(b, a % b);
return MP(p.SE, p.FI - (a / b) * p.SE);
}
};
template<int N> LL ModInt<N>::m;
template<int N> ModInt<N> operator+(LL a, const ModInt<N> & b) { return b + a; }
template<int N> ModInt<N> operator-(LL a, const ModInt<N> & b) { return -b + a; }
template<int N> ModInt<N> operator*(LL a, const ModInt<N> & b) { return b * a; }
template<int N> ModInt<N> operator/(LL a, const ModInt<N> & b) { return a * b.inv(); }
template<int N> istream & operator>>(istream & is, ModInt<N> & b) { LL v; is >> v; b.setval(v); return is; }
template<int N> ostream & operator<<(ostream & os, const ModInt<N> & b) { return (os << b.getval()); }
// ---- ----
int n;
ModInt<> dp[1000002][10];
int main() {
cin >> n;
ModInt<>::setmod(1e9 + 7);
dp[0][0] = 1;
incII(i, 1, n + 1) {
inc(j, 10) {
incII(k, 0, j) {
dp[i][j] += dp[i - 1][k];
}
}
}
cout << dp[n + 1][9] << endl;
return 0;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0