結果
問題 | No.740 幻の木 |
ユーザー | xoke0114 |
提出日時 | 2018-10-05 21:50:10 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 5 ms / 2,000 ms |
コード長 | 3,741 bytes |
コンパイル時間 | 1,592 ms |
コンパイル使用メモリ | 170,876 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-10-12 13:02:11 |
合計ジャッジ時間 | 2,101 ms |
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,820 KB |
testcase_01 | AC | 2 ms
6,816 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,816 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 2 ms
6,816 KB |
testcase_06 | AC | 5 ms
6,820 KB |
testcase_07 | AC | 2 ms
6,820 KB |
testcase_08 | AC | 2 ms
6,816 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using ull = unsigned long long; using ll = long long; #define REP(i, n) for (int i = 0; i < n; i++) #define REPR(i, n) for (int i = n; i >= 0; i--) #define FOR(i, m, n) for (int i = m; i < n; i++) #define pb push_back #define fill(x, y) memset(x, y, sizeof(x)) #define even(x) x % 2 == 0 #define odd(x) x % 2 != 0 #define all(x) x.begin(), x.end() #define pcnt __builtin_popcount #define buli(x) __builtin_popcountll(x) #define F first #define S second #define UNIQUE(v) v.erase(unique(v.begin(), v.end()), v.end()); #define IN1(x) ll x; cin >> x; // these functions return the position of result of Binary Search. #define LB(s, t, x) (int) (lower_bound(s, t, x) - s) #define UB(s, t, x) (int) (upper_bound(s, t, x) - s) ll qp(ll a, ll b, int mo) { ll ans = 1; do { if (b & 1) ans = 1ll * ans * a % mo; a = 1ll * a * a % mo; } while (b >>= 1); return ans; } ll gcd(ll a, ll b) { return b ? gcd(b, a % b) : a; } ll lcm(ll a, ll b) { ll temp = gcd(a, b); return temp ? (a / temp * b) : 0; } int mDays[] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; int dx[4] = {1, 0, -1, 0}, dy[4] = {0, 1, 0, -1}; int dx8[] = { 1, -1, 0, 0, 1, 1, -1, -1 }, dy8[] = { 0, 0, -1, 1, -1, 1, -1, 1 }; template <typename T> vector<T> make_v(size_t a) { return vector<T>(a); } template <typename T, typename... Ts> auto make_v(size_t a, size_t b, Ts... ts) { return vector<decltype(make_v<T>(b, ts...))>(a, make_v<T>(b, ts...)); } template <typename T, typename V> typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) { t = v; } template <typename T, typename V> typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) { for (auto &e : t) fill_v(e, v); } // auto dp = make_v<int>(4, h, w); // fill_v(dp, 0); const ll INF_LL = (1ll << 60); const int INF_INT = (int)1e9; const ll MOD_CONST = (ll)(1e9 + 7); template <typename T> vector<T> pows(int b, int n) { vector<T> ret; T x = 1; while (ret.size() < n) { ret.push_back(x); x *= b; } return ret; } // find string "from" in "str", and replace them to "to" void strReplace(std::string& str, const std::string& from, const std::string& to) { std::string::size_type pos = 0; while (pos = str.find(from, pos), pos != std::string::npos) { str.replace(pos, from.length(), to); pos += to.length(); } } template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } inline tuple<ll, ll> rotate45(tuple<ll, ll> point) { ll x = get<0>(point), y = get<1>(point); return tuple<ll, ll>(x + y, x - y); } inline bool rangeCheck2D(int nx, int ny, int Width, int Height) { return nx >= 0 and nx < Width and ny >= 0 and ny < Height; } template <typename T> vector<T> INPA(ll n) { vector<T> x; REP(i, n) { T tmp; cin >> tmp; x.push_back(tmp); } return move(x); } template <typename T> void out(T o) { cout << o << endl; } template <typename T> void out(vector<T> &out) { REP(i, (int)out.size()) { cout << out[i]; if (i == (int)out.size() - 1) cout << endl; else cout << " "; } } template <typename T> void out(vector<vector<T>> o) { REP(i, o.size()) out(o[i]); } void YesNo(bool f) { cout << (f?"Yes":"No") << endl; } void YESNO(bool f) { cout << (f?"YES":"NO") << endl; } int main(void) { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); IN1(N); IN1(M); IN1(P); P--; IN1(Q); Q--; ll cnt = 0, ans=0; while (true) { N -= M; if (P <= cnt and cnt <= (P + Q)) N -= M; cnt = (cnt + 1) % 12; if (N <= 0) break; ans++; } out(ans+1); return 0; }