結果
| 問題 |
No.749 クエリ全部盛り
|
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-10-19 23:08:34 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
AC
|
| 実行時間 | 992 ms / 3,000 ms |
| コード長 | 7,060 bytes |
| コンパイル時間 | 2,446 ms |
| コンパイル使用メモリ | 205,736 KB |
| 最終ジャッジ日時 | 2025-01-06 14:42:59 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| other | AC * 20 |
ソースコード
//=================================
// Created on: 2018/10/19 22:08:20
//=================================
#include <bits/stdc++.h>
#define show(x) std::cerr << #x << " = " << x << std::endl
using ll = long long;
using ull = unsigned long long;
using ld = long double;
constexpr ll MOD = 1000000007LL;
template <typename T>
constexpr T INF = std::numeric_limits<T>::max() / 10;
std::mt19937 mt{std::random_device{}()};
constexpr std::size_t PC(ull v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<std::size_t>(v * 0x0101010101010101ULL >> 56 & 0x7f); }
constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); }
constexpr ull SZ(const ull v) { return 1ULL << LG(v); }
template <typename Base>
class LazySegmentTree
{
public:
using BaseAlgebra = Base;
using AccMonoid = typename BaseAlgebra::AccMonoid;
using OpMonoid = typename BaseAlgebra::OpMonoid;
using T = typename BaseAlgebra::T;
using F = typename BaseAlgebra::OpMonoid::T;
LazySegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, AccMonoid::id()), action(half << 1, OpMonoid::id()) {}
template <typename InIt>
LazySegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, AccMonoid::id()), action(half << 1, OpMonoid::id())
{
copy(first, last, value.begin() + half);
for (std::size_t i = half - 1; i >= 1; i--) { up(i); }
}
T get(const std::size_t a) const { return accumulate(a, a + 1); }
void set(std::size_t a, const T& val)
{
modify(a, a + 1, OpMonoid::id()), value[a += half] = val;
while (a >>= 1) { up(a); }
}
T accumulate(const std::size_t L, const std::size_t R) const
{
auto arec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> T {
if (L <= left and right <= R) {
return value[index];
} else if (right <= L or R <= left) {
return AccMonoid::id();
} else {
return act(action[index], acc(self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right)));
}
};
return arec(arec, 1, 0, half);
}
void modify(const std::size_t L, const std::size_t R, const F& f)
{
auto mrec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> void {
if (L <= left and right <= R) {
this->down(index, f);
} else if (right <= L or R <= left) {
// Do nothing
} else {
this->down(index << 1, action[index]), this->down(index << 1 | 1, action[index]);
self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right);
this->up(index), action[index] = OpMonoid::id();
}
};
mrec(mrec, 1, 0, half);
}
//private:
void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }
void down(const std::size_t i, const F& f) { value[i] = act(f, value[i]), action[i] = compose(f, action[i]); }
const std::size_t data_num, half;
std::vector<T> value; // Tree for value(length: size)
std::vector<F> action; // Tree for action(length: half)
const AccMonoid acc{};
const OpMonoid compose{};
const BaseAlgebra act{};
};
template <typename T>
std::ostream& operator<<(std::ostream& os, const LazySegmentTree<T>& seg)
{
os << "[";
for (std::size_t i = 0; i < seg.data_num; i++) { os << seg.get(i) << ","; }
return (os << "]" << std::endl);
}
std::vector<ll> sum(1000000);
struct MAct
{
static ll fib(const int l, const int r) { return (sum[r - 1] + MOD - (l == 0 ? 0 : sum[l - 1])) % MOD; }
struct T
{
int l, r;
ll sum;
};
struct AccMonoid
{
T operator()(const T& a, const T& b) const { return T{std::min(a.l, b.l), std::max(a.r, b.r), (a.sum + b.sum) % MOD}; }
static T id() { return T{INF<int>, -INF<int>, 0}; }
};
struct OpMonoid
{
struct T
{
ll modify;
ll add;
ll mul;
ll fibo;
};
T operator()(const T& f1, const T& f2) const
{
if (f1.modify != INF<ll>) {
return T{f1.modify, 0, 1, f1.fibo};
} else {
if (f2.modify != INF<ll>) {
const ll mod = (f2.modify * f1.mul % MOD + f1.add) % MOD;
const ll fibo = (f2.fibo * f1.mul % MOD + f1.fibo) % MOD;
return T{mod, 0, 1, fibo};
} else {
const ll mul = f1.mul * f2.mul % MOD;
const ll add = (f1.mul * f2.add % MOD + f1.add) % MOD;
const ll fibo = (f1.mul * f2.fibo % MOD + f1.fibo) % MOD;
return T{INF<ll>, add, mul, fibo};
}
}
}
static T id() { return T{INF<ll>, 0, 1, 0}; }
};
T operator()(const OpMonoid::T& f, const T& x) const
{
const int l = x.l, r = x.r;
if (l == INF<int> or r == -INF<int>) { return x; }
ll sum = x.sum;
if (f.modify != INF<ll>) { sum = (r - l) * f.modify % MOD; }
(sum *= f.mul) %= MOD;
(sum += f.add * (r - l) % MOD) %= MOD;
(sum += f.fibo * fib(l, r) % MOD) %= MOD;
return T{l, r, sum};
}
};
std::ostream& operator<<(std::ostream& os, const MAct::T& v)
{
return (os << "(" << v.l << "," << v.r << ");" << v.sum);
}
int main()
{
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
sum[0] = 0, sum[1] = 1;
using T = MAct::T;
using F = MAct::OpMonoid::T;
std::vector<T> v(N, MAct::AccMonoid::id());
for (int i = 0; i < N; i++) { v[i] = T{i, i + 1, 0}; }
LazySegmentTree<MAct> seg(v.begin(), v.end());
for (int i = 2; i < N; i++) { sum[i] = (sum[i - 1] + sum[i - 2]) % MOD; }
for (int i = 1; i < N; i++) { (sum[i] += sum[i - 1]) %= MOD; }
for (int q = 0; q < Q; q++) {
int t, l, r;
ll k;
std::cin >> t >> l >> r >> k, r++;
if (t == 0) {
const T acc = seg.accumulate(l, r);
std::cerr << acc.l << " " << acc.r << " " << acc.sum << std::endl;
std::cout << acc.sum * k % MOD << "\n";
} else if (t == 1) {
seg.modify(l, r, F{k, 0, 1, 0});
} else if (t == 2) {
seg.modify(l, r, F{INF<ll>, k, 1, 0});
} else if (t == 3) {
seg.modify(l, r, F{INF<ll>, 0, k, 0});
} else {
seg.modify(l, r, F{INF<ll>, 0, 1, k});
}
// show(seg);
}
return 0;
}