結果
| 問題 |
No.251 大きな桁の復習問題(1)
|
| コンテスト | |
| ユーザー |
xuzijian629
|
| 提出日時 | 2018-10-28 03:22:56 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 5,897 bytes |
| コンパイル時間 | 2,245 ms |
| コンパイル使用メモリ | 211,096 KB |
| 最終ジャッジ日時 | 2025-01-06 14:57:22 |
|
ジャッジサーバーID (参考情報) |
judge1 / judge3 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 20 WA * 1 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
using i64 = int64_t;
using vi = vector<i64>;
using vvi = vector<vi>;
constexpr i64 MOD = 129402307;
// 負の数は扱っていない
// 宣言するときはconvert関数を使う
// 掛け算でFFTをやるので畳み込み後の配列の最大要素を1e13程度にして誤差を小さくしたい
// BASELOGを大きくすると桁数が1/BASELOGになる代わりに配列の要素が指数関数的に大きくなる
// 掛け算をしないのであれば定数倍早くなるのでBASELOGを大きくするとよい。掛け算をするときは3が精度的に安心
constexpr i64 BASE = 1000;
constexpr int BASELOG = 3;
struct BigInt {
// 掛け算のために本来の最大桁数の2倍必要
vi digit = vi(1 << 17);
int size;
BigInt(int size = 1, i64 a = 0) : size(size) {
digit[0] = a;
}
BigInt(const BigInt& a) {
size = a.size;
digit = vi(a.digit);
}
};
bool operator<(BigInt x, BigInt y) {
if (x.size != y.size) {
return x.size < y.size;
}
for (int i = x.size - 1; i >= 0; i--) {
if (x.digit[i] != y.digit[i]) {
return x.digit[i] < y.digit[i];
}
}
return false;
}
bool operator>(BigInt x, BigInt y) {
return y < x;
}
bool operator<=(BigInt x, BigInt y) {
return !(y < x);
}
bool operator>=(BigInt x, BigInt y) {
return !(x < y);
}
bool operator!=(BigInt x, BigInt y) {
return x < y || y < x;
}
bool operator==(BigInt x, BigInt y) {
return !(x < y) && !(y < x);
}
BigInt normal(BigInt x, bool all = false) {
i64 c = 0;
if (all) {
x.size = int(x.digit.size()) - 1;
}
for (int i = 0; i < x.size; i++) {
while (x.digit[i] < 0) {
x.digit[i + 1] -= 1;
x.digit[i] += BASE;
}
while (x.digit[i] >= BASE) {
x.digit[i + 1] += 1;
x.digit[i] -= BASE;
}
i64 a = x.digit[i] + c;
x.digit[i] = a % BASE;
c = a / BASE;
}
for (; c > 0; c /= BASE) {
x.digit[x.size++] = c % BASE;
}
while (x.size > 1 && x.digit[x.size - 1] == 0) {
x.size--;
}
return x;
}
BigInt convert(i64 a) {
return normal(BigInt(1, a), true);
}
BigInt convert(const string& s) {
BigInt x;
assert(s.size() / BASELOG <= x.digit.size() / 2);
int i = s.size() % BASELOG;
if (i > 0) {
i -= BASELOG;
}
for (; i < int(s.size()); i += BASELOG) {
i64 a = 0;
for (int j = 0; j < BASELOG; j++) {
a = 10 * a + (i + j >= 0 ? s[i + j] - '0' : 0);
}
x.digit[x.size++] = a;
}
reverse(x.digit.begin(), x.digit.begin() + x.size);
return normal(x);
}
ostream &operator<<(ostream& os, BigInt x) {
os << x.digit[x.size - 1];
for (int i = x.size - 2; i >= 0; i--) {
os << setw(BASELOG) << setfill('0') << x.digit[i];
}
return os;
}
istream &operator>>(istream& is, BigInt &x) {
string s;
is >> s;
x = convert(s);
return is;
}
string to_string(BigInt &x) {
stringstream ss;
ss << x.digit[x.size - 1];
for (int i = x.size - 2; i >= 0; i--) {
ss << setw(BASELOG) << setfill('0') << x.digit[i];
}
return ss.str();
}
BigInt operator+(BigInt x, BigInt y) {
if (x.size < y.size) {
x.size = y.size;
}
for (int i = 0; i < y.size; i++) {
x.digit[i] += y.digit[i];
}
return normal(x);
}
BigInt operator-(BigInt x, BigInt y) {
assert(x >= y);
for (int i = 0; i < y.size; i++) {
x.digit[i] -= y.digit[i];
}
return normal(x);
}
BigInt operator*(BigInt x, i64 a) {
for (int i = 0; i < x.size; i++) {
x.digit[i] *= a;
}
return normal(x);
}
void fft(vector<complex<double>>& a, bool inv = false) {
int n = int(a.size());
if (n == 1) return;
vector<complex<double>> even(n / 2), odd(n / 2);
for (int i = 0; i < n / 2; i++) {
even[i] = a[2 * i];
odd[i] = a[2 * i + 1];
}
fft(even, inv);
fft(odd, inv);
complex<double> omega = polar(1.0, (-2 * inv + 1) * 2 * acos(-1) / n);
complex<double> pow_omega = 1.0;
for (int i = 0; i < n / 2; i++) {
a[i] = even[i] + pow_omega * odd[i];
a[i + n / 2] = even[i] - pow_omega * odd[i];
pow_omega *= omega;
}
}
void conv(vector<complex<double>>& a, vector<complex<double>>& b) {
fft(a);
fft(b);
int n = int(a.size());
for (int i = 0; i < n; i++) {
a[i] *= b[i] / complex<double>(n);
}
fft(a, true);
}
void conv(vi& a, vi& b) {
vector<complex<double>> ac, bc;
for (int i = 0; i < a.size(); i++) {
ac.push_back(a[i]);
bc.push_back(b[i]);
}
conv(ac, bc);
a.resize(ac.size());
for (int i = 0; i < ac.size(); i++) {
a[i] = long(real(ac[i]) + 0.5);
}
}
BigInt operator*(BigInt x, BigInt y) {
conv(x.digit, y.digit);
return normal(x, true);
}
pair<BigInt, i64> divmod(BigInt x, i64 a) {
i64 c = 0, t;
for (int i = x.size - 1; i >= 0; i--) {
t = BASE * c + x.digit[i];
x.digit[i] = t / a;
c = t % a;
}
return pair<BigInt, i64>(normal(x), c);
}
BigInt operator/(BigInt x, i64 a) {
return divmod(x, a).first;
}
i64 operator%(BigInt x, i64 a) {
return divmod(x, a).second;
}
i64 modpow(i64 a, i64 n) {
if (n == 0) {
return 1;
} else if (n % 2 == 0) {
i64 t = modpow(a, n / 2);
return t * t % MOD;
}
return a * modpow(a, n - 1) % MOD;
}
int main() {
string n, m;
cin >> n >> m;
BigInt N = convert(n);
BigInt M = convert(m);
i64 nn = N % MOD;
i64 mm = M % (MOD - 1);
if (nn != 0 && mm == 0) {
cout << 1 << endl;
return 0;
}
if (nn == 0) {
cout << 0 << endl;
return 0;
}
cout << modpow(nn, mm) << endl;
}
xuzijian629