結果
問題 | No.251 大きな桁の復習問題(1) |
ユーザー | xuzijian629 |
提出日時 | 2018-10-28 03:26:23 |
言語 | C++17 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 21 ms / 5,000 ms |
コード長 | 5,939 bytes |
コンパイル時間 | 2,740 ms |
コンパイル使用メモリ | 217,616 KB |
実行使用メモリ | 11,920 KB |
最終ジャッジ日時 | 2024-11-19 06:59:08 |
合計ジャッジ時間 | 4,085 ms |
ジャッジサーバーID (参考情報) |
judge2 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 14 ms
11,464 KB |
testcase_01 | AC | 14 ms
11,592 KB |
testcase_02 | AC | 14 ms
11,592 KB |
testcase_03 | AC | 13 ms
11,596 KB |
testcase_04 | AC | 14 ms
11,460 KB |
testcase_05 | AC | 14 ms
11,464 KB |
testcase_06 | AC | 14 ms
11,460 KB |
testcase_07 | AC | 14 ms
11,592 KB |
testcase_08 | AC | 14 ms
11,464 KB |
testcase_09 | AC | 20 ms
11,916 KB |
testcase_10 | AC | 19 ms
11,796 KB |
testcase_11 | AC | 20 ms
11,920 KB |
testcase_12 | AC | 21 ms
11,796 KB |
testcase_13 | AC | 20 ms
11,792 KB |
testcase_14 | AC | 19 ms
11,792 KB |
testcase_15 | AC | 20 ms
11,920 KB |
testcase_16 | AC | 21 ms
11,920 KB |
testcase_17 | AC | 20 ms
11,916 KB |
testcase_18 | AC | 21 ms
11,916 KB |
testcase_19 | AC | 20 ms
11,920 KB |
testcase_20 | AC | 14 ms
11,468 KB |
testcase_21 | AC | 15 ms
11,592 KB |
testcase_22 | AC | 14 ms
11,464 KB |
testcase_23 | AC | 15 ms
11,464 KB |
ソースコード
#include <bits/stdc++.h> using namespace std; using i64 = int64_t; using vi = vector<i64>; using vvi = vector<vi>; constexpr i64 MOD = 129402307; // 負の数は扱っていない // 宣言するときはconvert関数を使う // 掛け算でFFTをやるので畳み込み後の配列の最大要素を1e13程度にして誤差を小さくしたい // BASELOGを大きくすると桁数が1/BASELOGになる代わりに配列の要素が指数関数的に大きくなる // 掛け算をしないのであれば定数倍早くなるのでBASELOGを大きくするとよい。掛け算をするときは3が精度的に安心 constexpr i64 BASE = 1000; constexpr int BASELOG = 3; struct BigInt { // 掛け算のために本来の最大桁数の2倍必要 vi digit = vi(1 << 17); int size; BigInt(int size = 1, i64 a = 0) : size(size) { digit[0] = a; } BigInt(const BigInt& a) { size = a.size; digit = vi(a.digit); } }; bool operator<(BigInt x, BigInt y) { if (x.size != y.size) { return x.size < y.size; } for (int i = x.size - 1; i >= 0; i--) { if (x.digit[i] != y.digit[i]) { return x.digit[i] < y.digit[i]; } } return false; } bool operator>(BigInt x, BigInt y) { return y < x; } bool operator<=(BigInt x, BigInt y) { return !(y < x); } bool operator>=(BigInt x, BigInt y) { return !(x < y); } bool operator!=(BigInt x, BigInt y) { return x < y || y < x; } bool operator==(BigInt x, BigInt y) { return !(x < y) && !(y < x); } BigInt normal(BigInt x, bool all = false) { i64 c = 0; if (all) { x.size = int(x.digit.size()) - 1; } for (int i = 0; i < x.size; i++) { while (x.digit[i] < 0) { x.digit[i + 1] -= 1; x.digit[i] += BASE; } while (x.digit[i] >= BASE) { x.digit[i + 1] += 1; x.digit[i] -= BASE; } i64 a = x.digit[i] + c; x.digit[i] = a % BASE; c = a / BASE; } for (; c > 0; c /= BASE) { x.digit[x.size++] = c % BASE; } while (x.size > 1 && x.digit[x.size - 1] == 0) { x.size--; } return x; } BigInt convert(i64 a) { return normal(BigInt(1, a), true); } BigInt convert(const string& s) { BigInt x; assert(s.size() / BASELOG <= x.digit.size() / 2); int i = s.size() % BASELOG; if (i > 0) { i -= BASELOG; } for (; i < int(s.size()); i += BASELOG) { i64 a = 0; for (int j = 0; j < BASELOG; j++) { a = 10 * a + (i + j >= 0 ? s[i + j] - '0' : 0); } x.digit[x.size++] = a; } reverse(x.digit.begin(), x.digit.begin() + x.size); return normal(x); } ostream &operator<<(ostream& os, BigInt x) { os << x.digit[x.size - 1]; for (int i = x.size - 2; i >= 0; i--) { os << setw(BASELOG) << setfill('0') << x.digit[i]; } return os; } istream &operator>>(istream& is, BigInt &x) { string s; is >> s; x = convert(s); return is; } string to_string(BigInt &x) { stringstream ss; ss << x.digit[x.size - 1]; for (int i = x.size - 2; i >= 0; i--) { ss << setw(BASELOG) << setfill('0') << x.digit[i]; } return ss.str(); } BigInt operator+(BigInt x, BigInt y) { if (x.size < y.size) { x.size = y.size; } for (int i = 0; i < y.size; i++) { x.digit[i] += y.digit[i]; } return normal(x); } BigInt operator-(BigInt x, BigInt y) { assert(x >= y); for (int i = 0; i < y.size; i++) { x.digit[i] -= y.digit[i]; } return normal(x); } BigInt operator*(BigInt x, i64 a) { for (int i = 0; i < x.size; i++) { x.digit[i] *= a; } return normal(x); } void fft(vector<complex<double>>& a, bool inv = false) { int n = int(a.size()); if (n == 1) return; vector<complex<double>> even(n / 2), odd(n / 2); for (int i = 0; i < n / 2; i++) { even[i] = a[2 * i]; odd[i] = a[2 * i + 1]; } fft(even, inv); fft(odd, inv); complex<double> omega = polar(1.0, (-2 * inv + 1) * 2 * acos(-1) / n); complex<double> pow_omega = 1.0; for (int i = 0; i < n / 2; i++) { a[i] = even[i] + pow_omega * odd[i]; a[i + n / 2] = even[i] - pow_omega * odd[i]; pow_omega *= omega; } } void conv(vector<complex<double>>& a, vector<complex<double>>& b) { fft(a); fft(b); int n = int(a.size()); for (int i = 0; i < n; i++) { a[i] *= b[i] / complex<double>(n); } fft(a, true); } void conv(vi& a, vi& b) { vector<complex<double>> ac, bc; for (int i = 0; i < a.size(); i++) { ac.push_back(a[i]); bc.push_back(b[i]); } conv(ac, bc); a.resize(ac.size()); for (int i = 0; i < ac.size(); i++) { a[i] = long(real(ac[i]) + 0.5); } } BigInt operator*(BigInt x, BigInt y) { conv(x.digit, y.digit); return normal(x, true); } pair<BigInt, i64> divmod(BigInt x, i64 a) { i64 c = 0, t; for (int i = x.size - 1; i >= 0; i--) { t = BASE * c + x.digit[i]; x.digit[i] = t / a; c = t % a; } return pair<BigInt, i64>(normal(x), c); } BigInt operator/(BigInt x, i64 a) { return divmod(x, a).first; } i64 operator%(BigInt x, i64 a) { return divmod(x, a).second; } i64 modpow(i64 a, i64 n) { if (n == 0) { return 1; } else if (n % 2 == 0) { i64 t = modpow(a, n / 2); return t * t % MOD; } return a * modpow(a, n - 1) % MOD; } int main() { string n, m; cin >> n >> m; BigInt N = convert(n); BigInt M = convert(m); i64 nn = N % MOD; i64 mm = M % (MOD - 1); if (nn == 0 && mm == 0) { if (m == "0") { cout << 1 << endl; return 0; } else { cout << 0 << endl; return 0; } } cout << modpow(nn, mm) << endl; }