結果
問題 | No.206 数の積集合を求めるクエリ |
ユーザー | smiken_61 |
提出日時 | 2018-10-31 19:07:17 |
言語 | C++11 (gcc 11.4.0) |
結果 |
AC
|
実行時間 | 208 ms / 7,000 ms |
コード長 | 13,629 bytes |
コンパイル時間 | 2,459 ms |
コンパイル使用メモリ | 168,376 KB |
実行使用メモリ | 16,920 KB |
最終ジャッジ日時 | 2024-11-19 12:43:20 |
合計ジャッジ時間 | 7,474 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge2 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 63 ms
16,384 KB |
testcase_01 | AC | 64 ms
15,944 KB |
testcase_02 | AC | 63 ms
15,960 KB |
testcase_03 | AC | 65 ms
16,920 KB |
testcase_04 | AC | 63 ms
15,776 KB |
testcase_05 | AC | 64 ms
15,656 KB |
testcase_06 | AC | 64 ms
15,632 KB |
testcase_07 | AC | 63 ms
15,148 KB |
testcase_08 | AC | 64 ms
15,904 KB |
testcase_09 | AC | 64 ms
15,520 KB |
testcase_10 | AC | 63 ms
15,784 KB |
testcase_11 | AC | 65 ms
16,624 KB |
testcase_12 | AC | 69 ms
16,896 KB |
testcase_13 | AC | 69 ms
16,684 KB |
testcase_14 | AC | 68 ms
15,640 KB |
testcase_15 | AC | 68 ms
16,072 KB |
testcase_16 | AC | 67 ms
16,068 KB |
testcase_17 | AC | 82 ms
15,500 KB |
testcase_18 | AC | 74 ms
15,528 KB |
testcase_19 | AC | 81 ms
15,532 KB |
testcase_20 | AC | 73 ms
15,828 KB |
testcase_21 | AC | 74 ms
15,396 KB |
testcase_22 | AC | 76 ms
16,012 KB |
testcase_23 | AC | 82 ms
15,832 KB |
testcase_24 | AC | 208 ms
15,176 KB |
testcase_25 | AC | 208 ms
16,668 KB |
testcase_26 | AC | 195 ms
16,456 KB |
testcase_27 | AC | 164 ms
15,672 KB |
testcase_28 | AC | 199 ms
15,480 KB |
testcase_29 | AC | 203 ms
15,812 KB |
testcase_30 | AC | 197 ms
16,224 KB |
ソースコード
#include <bits/stdc++.h> // #include <boost/multiprecision/cpp_int.hpp> #define int long long #define inf 1000000007 #define pa pair<int,int> #define ll long long #define pal pair<double,double> #define ppap pair<pa,int> // #define PI 3.14159265358979323846 #define paa pair<int,char> #define mp make_pair #define pb push_back #define EPS (1e-10) int dx[8]={0,1,0,-1,1,1,-1,-1}; int dy[8]={1,0,-1,0,-1,1,1,-1}; using namespace std; class pa3{ public: int x,y,z; pa3(int x=0,int y=0,int z=0):x(x),y(y),z(z) {} bool operator < (const pa3 &p) const{ if(x!=p.x) return x<p.x; if(y!=p.y) return y<p.y; return z<p.z; //return x != p.x ? x<p.x: y<p.y; } bool operator > (const pa3 &p) const{ if(x!=p.x) return x>p.x; if(y!=p.y) return y>p.y; return z>p.z; //return x != p.x ? x<p.x: y<p.y; } bool operator == (const pa3 &p) const{ return x==p.x && y==p.y && z==p.z; } bool operator != (const pa3 &p) const{ return !( x==p.x && y==p.y && z==p.z); } }; class pa4{ public: int x; int y,z,w; pa4(int x=0,int y=0,int z=0,int w=0):x(x),y(y),z(z),w(w) {} bool operator < (const pa4 &p) const{ if(x!=p.x) return x<p.x; if(y!=p.y) return y<p.y; if(z!=p.z)return z<p.z; return w<p.w; //return x != p.x ? x<p.x: y<p.y; } bool operator > (const pa4 &p) const{ if(x!=p.x) return x>p.x; if(y!=p.y) return y>p.y; if(z!=p.z)return z>p.z; return w>p.w; //return x != p.x ? x<p.x: y<p.y; } bool operator == (const pa4 &p) const{ return x==p.x && y==p.y && z==p.z &&w==p.w; } }; class pa2{ public: int x,y; pa2(int x=0,int y=0):x(x),y(y) {} pa2 operator + (pa2 p) {return pa2(x+p.x,y+p.y);} pa2 operator - (pa2 p) {return pa2(x-p.x,y-p.y);} bool operator < (const pa2 &p) const{ return y != p.y ? y<p.y: x<p.x; } bool operator > (const pa2 &p) const{ return x != p.x ? x<p.x: y<p.y; } bool operator == (const pa2 &p) const{ return abs(x-p.x)==0 && abs(y-p.y)==0; } bool operator != (const pa2 &p) const{ return !(abs(x-p.x)==0 && abs(y-p.y)==0); } }; /* class Point{ public: double x,y; Point(double x=0,double y=0):x(x),y(y) {} Point operator + (Point p) {return Point(x+p.x,y+p.y);} Point operator - (Point p) {return Point(x-p.x,y-p.y);} Point operator * (double a) {return Point(x*a,y*a);} Point operator / (double a) {return Point(x/a,y/a);} double absv() {return sqrt(norm());} double norm() {return x*x+y*y;} bool operator < (const Point &p) const{ return x != p.x ? x<p.x: y<p.y; } bool operator == (const Point &p) const{ return fabs(x-p.x)<EPS && fabs(y-p.y)<EPS; } }; typedef Point Vector; #define pl pair<int,pas> struct Segment{ Point p1,p2; }; double dot(Vector a,Vector b){ return a.x*b.x+a.y*b.y; } double cross(Vector a,Vector b){ return a.x*b.y-a.y*b.x; } bool parareru(Point a,Point b,Point c,Point d){ // if(abs(cross(a-b,d-c))<EPS)cout<<"dd "<<cross(a-b,d-c)<<endl; return abs(cross(a-b,d-c))<EPS; } double distance_ls_p(Point a, Point b, Point c) { if ( dot(b-a, c-a) < EPS ) return (c-a).absv(); if ( dot(a-b, c-b) < EPS ) return (c-b).absv(); return abs(cross(b-a, c-a)) / (b-a).absv(); } bool is_intersected_ls(Segment a,Segment b) { if(a.p1==b.p1||a.p2==b.p1||a.p1==b.p2||a.p2==b.p2) return false; if(parareru((a.p2),(a.p1),(a.p1),(b.p2))&¶reru((a.p2),(a.p1),(a.p1),(b.p1))){ // cout<<"sss"<<endl; if(dot(a.p1-b.p1,a.p1-b.p2)<EPS) return true; if(dot(a.p2-b.p1,a.p2-b.p2)<EPS) return true; if(dot(a.p1-b.p1,a.p2-b.p1)<EPS) return true; if(dot(a.p1-b.p2,a.p2-b.p2)<EPS) return true; return false; } else return ( cross(a.p2-a.p1, b.p1-a.p1) * cross(a.p2-a.p1, b.p2-a.p1) < EPS ) && ( cross(b.p2-b.p1, a.p1-b.p1) * cross(b.p2-b.p1, a.p2-b.p1) < EPS ); } double segment_dis(Segment a,Segment b){ if(is_intersected_ls(a,b))return 0; double r=distance_ls_p(a.p1, a.p2, b.p1); r=min(r,distance_ls_p(a.p1, a.p2, b.p2)); r=min(r,distance_ls_p(b.p1, b.p2, a.p2)); r=min(r,distance_ls_p(b.p1, b.p2, a.p1)); return r; } Point intersection_ls(Segment a, Segment b) { Point ba = b.p2-b.p1; double d1 = abs(cross(ba, a.p1-b.p1)); double d2 = abs(cross(ba, a.p2-b.p1)); double t = d1 / (d1 + d2); return a.p1 + (a.p2-a.p1) * t; } */ string itos( int i ) { ostringstream s ; s << i ; return s.str() ; } int gcd(int v,int b){ if(v>b) return gcd(b,v); if(v==b) return b; if(b%v==0) return v; return gcd(v,b%v); } double distans(double x1,double y1,double x2,double y2){ double rr=(x1-x2)*(x1-x2)+(y1-y2)*(y1-y2); return sqrt(rr); } int mod; int pr[500010]; int inv[500010]; int beki(int wa,int rr,int warukazu){ if(rr==0) return 1%warukazu; if(rr==1) return wa%warukazu; wa%=warukazu; if(rr%2==1) return ((ll)beki(wa,rr-1,warukazu)*(ll)wa)%warukazu; ll zx=beki(wa,rr/2,warukazu); return (zx*zx)%warukazu; } double bekid(double w,int r){ if(r==0) return 1.0; if(r==1) return w; if(r%2) return bekid(w,r-1)*w; double f=bekid(w,r/2); return f*f; } int comb(int nn,int rr){ int r=pr[nn]*inv[rr]; r%=mod; r*=inv[nn-rr]; r%=mod; return r; } /* void gya(int ert){ pr[0]=1; for(int i=1;i<ert;i++){ pr[i]=(pr[i-1]*i)%mod; } for(int i=0;i<ert;i++) inv[i]=beki(pr[i],mod-2,mod); } */ // cin.tie(0); // ios::sync_with_stdio(false); //priority_queue<pa3,vector<pa3>,greater<pa3>> pq; //sort(ve.begin(),ve.end(),greater<int>()); //----------------kokomade tenpure------------ //vector<double> ans(100000000),ans2(100000000) int D[1000000]; void fourie(int N,int d,vector<int> &vec ){// 1<<d == N // Uは順方向ではexp(2pi*I/N)逆だとexp(-2pi*I/N) if(N==1){ return; } int gyaku=0; for(int i=1;i<N;i++){ int e=1<<(d-1); while(gyaku&e){ gyaku^=e; e>>=1; } gyaku^=e; if(i<gyaku)swap(vec[i],vec[gyaku]); } for(int c=0;c<d;c++){ int f=1<<c; for(int i=0;i<N;i+=(f<<1)){ for(int j=i;j<i+f;j++){ int A1=(vec[j]+vec[j+f]*D[(j-i)<<(d-c-1)])%998244353; int A2=(vec[j]-(vec[j+f]*D[(j-i)<<(d-c-1)]%998244353)+998244353)%998244353; vec[j]=A1; vec[j+f]=A2; } } } return; } vector<int> FFT(vector<int> input1,vector<int> input2){ int N=1; int d=0; int size1=input1.size(),size2=input2.size(); while(N<size1+size2){ N*=2; d++; } assert(N==(1<<d)); while(input1.size()<N)input1.pb(0); while(input2.size()<N)input2.pb(0); // (3^119)^(2^23)=1 mod 998244353 int g=beki(3,119,998244353); for(int i=0;i<23-d;i++)g=(g*g)%998244353; //cout<<" "<<beki(g,N,998244353)<<endl; D[0]=1; for(int i=1;i<N;i++){ D[i]=D[i-1]*g%998244353; } fourie(N,d,input1); fourie(N,d,input2); vector<int> ANS; for(int i=0;i<N;i++)input1[i]=input1[i]*input2[i]%998244353; for(int i=1;i<N/2;i++)swap(D[i],D[N-i]); fourie(N,d,input1); int ninv=beki(N,998244353-2,998244353); for(int i=0;i<N;i++)input1[i]=input1[i]*ninv%998244353; for(int i=0;i<N;i++){ ANS.pb(input1[i]); } return ANS; } signed main(){ cin.tie(0); ios::sync_with_stdio(false); int l,m,n; cin>>l>>m>>n; vector<int> ve1(100001,0); vector<int> ve2(100001,0); for(int i=0;i<l;i++){ int y; cin>>y; ve1[y]=1; } for(int i=0;i<m;i++){ int y; cin>>y; ve2[y]=1; } reverse(ve2.begin(),ve2.end()); vector<int> ve=FFT(ve1,ve2); int q; cin>>q; for(int i=0;i<q;i++)cout<<ve[100000+i]<<endl; return 0; }