結果

問題 No.754 畳み込みの和
ユーザー ei1333333
提出日時 2018-12-02 01:16:18
言語 C++17
(gcc 13.3.0 + boost 1.87.0)
結果
AC  
実行時間 634 ms / 5,000 ms
コード長 3,903 bytes
コンパイル時間 1,891 ms
コンパイル使用メモリ 198,948 KB
最終ジャッジ日時 2025-01-06 17:52:08
ジャッジサーバーID
(参考情報)
judge3 / judge1
このコードへのチャレンジ
(要ログイン)
ファイルパターン 結果
other AC * 3
権限があれば一括ダウンロードができます

ソースコード

diff #
プレゼンテーションモードにする

#include<bits/stdc++.h>
using namespace std;
using int64 = long long;
const int mod = 1e9 + 7;
// 924844033,5
struct NumberTheoreticTransform {
int mod;
int primitiveroot;
NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {}
inline int mod_pow(int x, int n) {
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x);
x = mul(x, x);
n >>= 1;
}
return ret;
}
inline int inverse(int x) {
return (mod_pow(x, mod - 2));
}
inline int add(unsigned x, int y) {
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b) {
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
void DiscreteFourierTransform(vector< int > &F, bool rev) {
const int N = (int) F.size();
for(int i = 0, j = 1; j + 1 < N; j++) {
for(int k = N >> 1; k > (i ^= k); k >>= 1);
if(i > j) swap(F[i], F[j]);
}
int w, wn, s, t;
for(int i = 1; i < N; i <<= 1) {
w = mod_pow(primitiveroot, (mod - 1) / (i * 2));
if(rev) w = inverse(w);
for(int k = 0; k < i; k++) {
wn = mod_pow(w, k);
for(int j = 0; j < N; j += i * 2) {
s = F[j + k], t = mul(F[j + k + i], wn);
F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);
}
}
}
if(rev) {
int temp = inverse(N);
for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);
}
}
vector< int > Multiply(const vector< int > &A, const vector< int > &B) {
int sz = 1;
while(sz < A.size() + B.size() - 1) sz <<= 1;
vector< int > F(sz), G(sz);
for(int i = 0; i < A.size(); i++) F[i] = A[i];
for(int i = 0; i < B.size(); i++) G[i] = B[i];
DiscreteFourierTransform(F, false);
DiscreteFourierTransform(G, false);
for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);
DiscreteFourierTransform(F, true);
F.resize(A.size() + B.size() - 1);
return (F);
}
};
// http://math314.hateblo.jp/entry/2015/05/07/014908
inline int add(unsigned x, int y, int mod) {
x += y;
if(x >= mod) x -= mod;
return (x);
}
inline int mul(int a, int b, int mod) {
unsigned long long x = (long long) a * b;
unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;
asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));
return (m);
}
inline int mod_pow(int x, int n, int mod) {
int ret = 1;
while(n > 0) {
if(n & 1) ret = mul(ret, x, mod);
x = mul(x, x, mod);
n >>= 1;
}
return ret;
}
inline int inverse(int x, int mod) {
return (mod_pow(x, mod - 2, mod));
}
vector< int > AnyModNTTMultiply(vector< int > &a, vector< int > &b, int mod) {
for(auto &x : a) x %= mod;
for(auto &x : b) x %= mod;
NumberTheoreticTransform ntt1(167772161, 3);
NumberTheoreticTransform ntt2(469762049, 3);
NumberTheoreticTransform ntt3(1224736769, 3);
auto x = ntt1.Multiply(a, b);
auto y = ntt2.Multiply(a, b);
auto z = ntt3.Multiply(a, b);
const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod;
const int m1_inv_m2 = inverse(m1, m2);
const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3);
const int m12_mod = mul(m1, m2, mod);
vector< int > ret(x.size());
for(int i = 0; i < x.size(); i++) {
int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2);
int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3);
ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod);
}
return ret;
}
int main() {
int N;
cin >> N;
vector< int > A(N + 1), B(N + 1);
for(int i = 0; i <= N; i++) cin >> A[i];
for(int i = 0; i <= N; i++) cin >> B[i];
auto v = AnyModNTTMultiply(A, B, mod);
int ret = 0;
for(int i = 0; i <= N; i++) (ret += v[i]) %= mod;
cout << ret << endl;
}
הההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההההה
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
0