結果
問題 | No.754 畳み込みの和 |
ユーザー |
![]() |
提出日時 | 2018-12-02 01:16:18 |
言語 | C++17 (gcc 13.3.0 + boost 1.87.0) |
結果 |
AC
|
実行時間 | 634 ms / 5,000 ms |
コード長 | 3,903 bytes |
コンパイル時間 | 1,891 ms |
コンパイル使用メモリ | 198,948 KB |
最終ジャッジ日時 | 2025-01-06 17:52:08 |
ジャッジサーバーID (参考情報) |
judge3 / judge1 |
(要ログイン)
ファイルパターン | 結果 |
---|---|
other | AC * 3 |
ソースコード
#include<bits/stdc++.h>using namespace std;using int64 = long long;const int mod = 1e9 + 7;// 924844033,5struct NumberTheoreticTransform {int mod;int primitiveroot;NumberTheoreticTransform(int mod, int root) : mod(mod), primitiveroot(root) {}inline int mod_pow(int x, int n) {int ret = 1;while(n > 0) {if(n & 1) ret = mul(ret, x);x = mul(x, x);n >>= 1;}return ret;}inline int inverse(int x) {return (mod_pow(x, mod - 2));}inline int add(unsigned x, int y) {x += y;if(x >= mod) x -= mod;return (x);}inline int mul(int a, int b) {unsigned long long x = (long long) a * b;unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));return (m);}void DiscreteFourierTransform(vector< int > &F, bool rev) {const int N = (int) F.size();for(int i = 0, j = 1; j + 1 < N; j++) {for(int k = N >> 1; k > (i ^= k); k >>= 1);if(i > j) swap(F[i], F[j]);}int w, wn, s, t;for(int i = 1; i < N; i <<= 1) {w = mod_pow(primitiveroot, (mod - 1) / (i * 2));if(rev) w = inverse(w);for(int k = 0; k < i; k++) {wn = mod_pow(w, k);for(int j = 0; j < N; j += i * 2) {s = F[j + k], t = mul(F[j + k + i], wn);F[j + k] = add(s, t), F[j + k + i] = add(s, mod - t);}}}if(rev) {int temp = inverse(N);for(int i = 0; i < N; i++) F[i] = mul(F[i], temp);}}vector< int > Multiply(const vector< int > &A, const vector< int > &B) {int sz = 1;while(sz < A.size() + B.size() - 1) sz <<= 1;vector< int > F(sz), G(sz);for(int i = 0; i < A.size(); i++) F[i] = A[i];for(int i = 0; i < B.size(); i++) G[i] = B[i];DiscreteFourierTransform(F, false);DiscreteFourierTransform(G, false);for(int i = 0; i < sz; i++) F[i] = mul(F[i], G[i]);DiscreteFourierTransform(F, true);F.resize(A.size() + B.size() - 1);return (F);}};// http://math314.hateblo.jp/entry/2015/05/07/014908inline int add(unsigned x, int y, int mod) {x += y;if(x >= mod) x -= mod;return (x);}inline int mul(int a, int b, int mod) {unsigned long long x = (long long) a * b;unsigned xh = (unsigned) (x >> 32), xl = (unsigned) x, d, m;asm("divl %4; \n\t" : "=a" (d), "=d" (m) : "d" (xh), "a" (xl), "r" (mod));return (m);}inline int mod_pow(int x, int n, int mod) {int ret = 1;while(n > 0) {if(n & 1) ret = mul(ret, x, mod);x = mul(x, x, mod);n >>= 1;}return ret;}inline int inverse(int x, int mod) {return (mod_pow(x, mod - 2, mod));}vector< int > AnyModNTTMultiply(vector< int > &a, vector< int > &b, int mod) {for(auto &x : a) x %= mod;for(auto &x : b) x %= mod;NumberTheoreticTransform ntt1(167772161, 3);NumberTheoreticTransform ntt2(469762049, 3);NumberTheoreticTransform ntt3(1224736769, 3);auto x = ntt1.Multiply(a, b);auto y = ntt2.Multiply(a, b);auto z = ntt3.Multiply(a, b);const int m1 = ntt1.mod, m2 = ntt2.mod, m3 = ntt3.mod;const int m1_inv_m2 = inverse(m1, m2);const int m12_inv_m3 = inverse(mul(m1, m2, m3), m3);const int m12_mod = mul(m1, m2, mod);vector< int > ret(x.size());for(int i = 0; i < x.size(); i++) {int v1 = mul(add(y[i], m2 - x[i], m2), m1_inv_m2, m2);int v2 = mul(add(z[i], m3 - add(x[i], mul(m1, v1, m3), m3), m3), m12_inv_m3, m3);ret[i] = add(x[i], add(mul(m1, v1, mod), mul(m12_mod, v2, mod), mod), mod);}return ret;}int main() {int N;cin >> N;vector< int > A(N + 1), B(N + 1);for(int i = 0; i <= N; i++) cin >> A[i];for(int i = 0; i <= N; i++) cin >> B[i];auto v = AnyModNTTMultiply(A, B, mod);int ret = 0;for(int i = 0; i <= N; i++) (ret += v[i]) %= mod;cout << ret << endl;}