結果
問題 | No.829 成長関数インフレ中 |
ユーザー | kopricky |
提出日時 | 2018-12-08 09:35:27 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
AC
|
実行時間 | 786 ms / 2,000 ms |
コード長 | 7,251 bytes |
コンパイル時間 | 2,182 ms |
コンパイル使用メモリ | 185,160 KB |
実行使用メモリ | 65,940 KB |
最終ジャッジ日時 | 2024-09-15 13:23:01 |
合計ジャッジ時間 | 6,323 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge4 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 17 ms
19,584 KB |
testcase_01 | AC | 18 ms
19,584 KB |
testcase_02 | AC | 17 ms
19,456 KB |
testcase_03 | AC | 14 ms
15,232 KB |
testcase_04 | AC | 17 ms
19,456 KB |
testcase_05 | AC | 17 ms
19,456 KB |
testcase_06 | AC | 17 ms
19,456 KB |
testcase_07 | AC | 17 ms
19,456 KB |
testcase_08 | AC | 17 ms
19,456 KB |
testcase_09 | AC | 17 ms
19,456 KB |
testcase_10 | AC | 17 ms
19,456 KB |
testcase_11 | AC | 17 ms
19,456 KB |
testcase_12 | AC | 18 ms
19,456 KB |
testcase_13 | AC | 18 ms
19,456 KB |
testcase_14 | AC | 17 ms
19,456 KB |
testcase_15 | AC | 159 ms
29,940 KB |
testcase_16 | AC | 319 ms
40,380 KB |
testcase_17 | AC | 528 ms
47,324 KB |
testcase_18 | AC | 720 ms
63,708 KB |
testcase_19 | AC | 599 ms
49,304 KB |
testcase_20 | AC | 786 ms
65,940 KB |
testcase_21 | AC | 17 ms
19,456 KB |
ソースコード
#include <bits/stdc++.h> #pragma GCC optimize("O3") #pragma GCC target("avx") #define ll long long #define INF 1000000005 #define MOD 1000000007 #define EPS 1e-9 #define rep(i,n) for(int i=0;i<(int)(n);++i) #define rrep(i,n) for(int i=(int)(n)-1;i>=0;--i) #define srep(i,s,t) for(int i=(int)(s);i<(int)(t);++i) #define each(a,b) for(auto& (a): (b)) #define all(v) (v).begin(),(v).end() #define len(v) (int)(v).size() #define zip(v) sort(all(v)),v.erase(unique(all(v)),v.end()) #define cmx(x,y) x=max(x,y) #define cmn(x,y) x=min(x,y) #define fi first #define se second #define pb push_back #define show(x) cout<<#x<<" = "<<(x)<<endl #define spair(p) cout<<#p<<": "<<p.fi<<" "<<p.se<<endl #define sar(a,n) cout<<#a<<":";rep(pachico,n)cout<<" "<<a[pachico];cout<<endl #define svec(v) cout<<#v<<":";rep(pachico,v.size())cout<<" "<<v[pachico];cout<<endl #define svecp(v) cout<<#v<<":";each(pachico,v)cout<<" {"<<pachico.first<<":"<<pachico.second<<"}";cout<<endl #define sset(s) cout<<#s<<":";each(pachico,s)cout<<" "<<pachico;cout<<endl #define smap(m) cout<<#m<<":";each(pachico,m)cout<<" {"<<pachico.first<<":"<<pachico.second<<"}";cout<<endl #define pw(x) (1LL<<(x)) using namespace std; typedef pair<int,int> P; typedef pair<ll,ll> pll; typedef vector<int> vi; typedef vector<vi> vvi; typedef vector<ll> vl; typedef vector<vl> vvl; typedef vector<double> vd; typedef vector<P> vp; typedef vector<string> vs; typedef double dbl; typedef pair<int, int> pi; const int MAX_N = 200000; #define getchar getchar_unlocked inline int in() { int n = 0; short c; while ((c = getchar()) >= '0') n = n * 10 + c - '0'; return n; } int inv[MAX_N],fac[MAX_N],finv[MAX_N]; void make() { fac[0] = fac[1] = 1; finv[0] = finv[1] = 1; inv[1] = 1; for(int i=2;i<MAX_N;i++){ inv[i] = MOD - (ll)inv[MOD%i] * (MOD/i) % MOD; fac[i] = (ll)fac[i-1] * i % MOD; finv[i] = (ll)finv[i-1] * inv[i] % MOD; } } inline int prod(int a, int b) { return (a < b) ? 0 : ((ll)fac[a] * finv[a-b] % MOD); } void extgcd(int a,int b, int& x,int& y) { if(b){ extgcd(b, a%b, y, x); y -= (a/b)*x; }else{ x = 1, y = 0; } } int mod_inverse(int a, int m) { int x, y; extgcd(a,m,x,y); return (m + x % m) % m; } namespace fft { const int maxBase = 18; const int maxN = 1 << maxBase; struct num { dbl x, y; num(){} num(dbl xx, dbl yy): x(xx), y(yy) {} num(dbl alp): x(cos(alp)), y(sin(alp)) {} }; inline num operator + (num a, num b) { return num(a.x + b.x, a.y + b.y); } inline num operator - (num a, num b) { return num(a.x - b.x, a.y - b.y); } inline num operator * (num a, num b) { return num(a.x * b.x - a.y * b.y, a.x * b.y + a.y * b.x); } inline num conj(num a) { return num(a.x, -a.y); } const dbl PI = acos(-1); num root[maxN]; int rev[maxN]; bool rootsPrepared = false; void prepRoots() { if (rootsPrepared) return; rootsPrepared = true; root[1] = num(1, 0); for (int k = 1; k < maxBase; ++k) { num x(2 * PI / pw(k + 1)); for (int i = pw(k - 1); i < pw(k); ++i) { root[2 * i] = root[i]; root[2 * i + 1] = root[i] * x; } } } int base, N; int lastRevN = -1; void prepRev() { if (lastRevN == N) return; lastRevN = N; rep(i, N) rev[i] = (rev[i >> 1] >> 1) + ((i & 1) << (base - 1)); } void fft(num *a, num *f) { rep(i, N) f[i] = a[rev[i]]; for (int k = 1; k < N; k <<= 1) for (int i = 0; i < N; i += 2 * k) rep(j, k) { num z = f[i + j + k] * root[j + k]; f[i + j + k] = f[i + j] - z; f[i + j] = f[i + j] + z; } } num a[maxN], b[maxN], f[maxN], g[maxN]; ll A[maxN], B[maxN], C[maxN]; void _multMod(int mod) { rep(i, N) { int x = A[i] % mod; a[i] = num(x & (pw(15) - 1), x >> 15); } rep(i, N) { int x = B[i] % mod; b[i] = num(x & (pw(15) - 1), x >> 15); } fft(a, f); fft(b, g); rep(i, N) { int j = (N - i) & (N - 1); num a1 = (f[i] + conj(f[j])) * num(0.5, 0); num a2 = (f[i] - conj(f[j])) * num(0, -0.5); num b1 = (g[i] + conj(g[j])) * num(0.5 / N, 0); num b2 = (g[i] - conj(g[j])) * num(0, -0.5 / N); a[j] = a1 * b1 + a2 * b2 * num(0, 1); b[j] = a1 * b2 + a2 * b1; } fft(a, f); fft(b, g); rep(i, N) { ll aa = f[i].x + 0.5; ll bb = g[i].x + 0.5; ll cc = f[i].y + 0.5; C[i] = (aa + bb % mod * pw(15) + cc % mod * pw(30)) % mod; } } void prepAB(int n1, int n2) { base = 1; N = 2; while (N < n1 + n2) base++, N <<= 1; assert(base <= maxBase); for (int i = n1; i < N; ++i) A[i] = 0; for (int i = n2; i < N; ++i) B[i] = 0; prepRoots(); prepRev(); } void multMod(int n1, int n2, int mod) { prepAB(n1, n2); _multMod(mod); } } struct poly { vi v; poly() {} poly(vi vv) { v = vv; } int size() { return (int)v.size(); } poly cut(int maxLen) { if (maxLen < len(v)) v.resize(maxLen); return *this; } poly norm() { while (len(v) > 1 && v.back() == 0) v.pop_back(); return *this; } inline int& operator [] (int i) { return v[i]; } }; poly operator + (poly A, poly B) { poly C; C.v = vi(max(len(A), len(B))); rep(i, len(C)) { if (i < len(A)) C[i] = (C[i] + A[i]) % MOD; if (i < len(B)) C[i] = (C[i] + B[i]) % MOD; } return C.norm(); } poly operator - (poly A, poly B) { poly C; C.v = vi(max(len(A), len(B))); rep(i, len(C)) { if (i < len(A)) C[i] = (C[i] + A[i]) % MOD; if (i < len(B)) C[i] = (C[i] + MOD - B[i]) % MOD; } return C.norm(); } poly operator * (poly A, poly B) { poly C; C.v = vi(len(A) + len(B) - 1); rep(i, len(A)) fft::A[i] = A[i]; rep(i, len(B)) fft::B[i] = B[i]; fft::multMod(len(A), len(B), MOD); rep(i, len(C)) C[i] = fft::C[i]; return C.norm(); } poly c[2*MAX_N]; int cnt[MAX_N]; int main() { int n = in(), B = in(); rep(i,n){ cnt[in()]++; } make(); int id = 0, num = 0; priority_queue<P, vector<P>, greater<P> > que; rrep(i,MAX_N){ if(!cnt[i]) continue; c[num] = (vi){prod(id+cnt[i]-1, cnt[i]) % MOD, (int)((ll)prod(id+cnt[i]-1, cnt[i]-1) * cnt[i] % MOD)}; que.push(P(2, num++)); id += cnt[i]; } while(len(que) >= 2){ int p = que.top().se; que.pop(); int q = que.top().se; que.pop(); c[num] = c[p] * c[q]; que.push(P(len(c[num]), num)); num++; } int index = que.top().se; int ans = 0, nB = 1; rep(i, len(c[index])){ ans = (ans + (((ll)c[index][i] * i) % MOD) * nB) % MOD; nB = (ll)nB * B % MOD; } cout << ans << "\n"; return 0; }