結果
| 問題 | No.766 金魚すくい |
| コンテスト | |
| ユーザー |
FF256grhy
|
| 提出日時 | 2018-12-14 01:35:21 |
| 言語 | C++14 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
AC
|
| 実行時間 | 481 ms / 1,500 ms |
| コード長 | 4,738 bytes |
| 記録 | |
| コンパイル時間 | 1,873 ms |
| コンパイル使用メモリ | 177,448 KB |
| 実行使用メモリ | 6,948 KB |
| 最終ジャッジ日時 | 2024-09-25 04:52:13 |
| 合計ジャッジ時間 | 11,122 ms |
|
ジャッジサーバーID (参考情報) |
judge4 / judge2 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 3 |
| other | AC * 42 |
ソースコード
#include <bits/stdc++.h>
using namespace std;
typedef long long signed int LL;
typedef long long unsigned int LU;
#define incID(i, l, r) for(int i = (l) ; i < (r); i++)
#define incII(i, l, r) for(int i = (l) ; i <= (r); i++)
#define decID(i, l, r) for(int i = (r) - 1; i >= (l); i--)
#define decII(i, l, r) for(int i = (r) ; i >= (l); i--)
#define inc(i, n) incID(i, 0, n)
#define inc1(i, n) incII(i, 1, n)
#define dec(i, n) decID(i, 0, n)
#define dec1(i, n) decII(i, 1, n)
#define inII(v, l, r) ((l) <= (v) && (v) <= (r))
#define inID(v, l, r) ((l) <= (v) && (v) < (r))
#define PB push_back
#define EB emplace_back
#define MP make_pair
#define FI first
#define SE second
#define PQ priority_queue
#define ALL(v) v.begin(), v.end()
#define RALL(v) v.rbegin(), v.rend()
#define FOR(it, v) for(auto it = v.begin(); it != v.end(); ++it)
#define RFOR(it, v) for(auto it = v.rbegin(); it != v.rend(); ++it)
template<typename T> bool setmin(T & a, T b) { if(b < a) { a = b; return true; } else { return false; } }
template<typename T> bool setmax(T & a, T b) { if(b > a) { a = b; return true; } else { return false; } }
template<typename T> bool setmineq(T & a, T b) { if(b <= a) { a = b; return true; } else { return false; } }
template<typename T> bool setmaxeq(T & a, T b) { if(b >= a) { a = b; return true; } else { return false; } }
template<typename T> T gcd(T a, T b) { return (b == 0 ? a : gcd(b, a % b)); }
template<typename T> T lcm(T a, T b) { return a / gcd(a, b) * b; }
// ---- ----
template<int N = 0> class ModInt {
private:
LL v = 0;
static LL m;
public:
ModInt() { }
ModInt(LL vv) { setval(vv); }
ModInt & setval(LL vv) { v = vv % m; if(v < 0) { v += m; } return (*this); }
static void setmod(LL mm) { m = mm; }
LL getval() const { return v; }
ModInt & operator+=(const ModInt & b) { return setval(v + b.v); }
ModInt & operator-=(const ModInt & b) { return setval(v - b.v); }
ModInt & operator*=(const ModInt & b) { return setval(v * b.v); }
ModInt & operator/=(const ModInt & b) { return setval(v * b.inv()); }
ModInt & operator^=( LU b) { return setval(ex(v, b)); }
ModInt operator+ ( ) const { return ModInt(+v); }
ModInt operator- ( ) const { return ModInt(-v); }
ModInt operator+ (const ModInt & b) const { return ModInt(v + b.v); }
ModInt operator- (const ModInt & b) const { return ModInt(v - b.v); }
ModInt operator* (const ModInt & b) const { return ModInt(v * b.v); }
ModInt operator/ (const ModInt & b) const { return ModInt(v * b.inv()); }
ModInt operator^ ( LU b) const { return ModInt(ex(v, b)); }
LL inv() const {
LL x = (ex_gcd(v, m).FI + m) % m;
assert(v * x % m == 1);
return x;
}
LL ex(LL a, LU b) const {
LL D = 64, x[64], y = 1;
inc(i, D) { if((b >> i) == 0) { D = i; break; } }
inc(i, D) { x[i] = (i == 0 ? a : x[i - 1] * x[i - 1]) % m; }
inc(i, D) { if((b >> i) & 1) { (y *= x[i]) %= m; } }
return y;
}
pair<LL, LL> ex_gcd(LL a, LL b) const {
if(b == 0) { return MP(1, 0); }
auto p = ex_gcd(b, a % b);
return MP(p.SE, p.FI - (a / b) * p.SE);
}
};
template<int N> LL ModInt<N>::m;
template<int N> ModInt<N> operator+(LL a, const ModInt<N> & b) { return b + a; }
template<int N> ModInt<N> operator-(LL a, const ModInt<N> & b) { return -b + a; }
template<int N> ModInt<N> operator*(LL a, const ModInt<N> & b) { return b * a; }
template<int N> ModInt<N> operator/(LL a, const ModInt<N> & b) { return a * b.inv(); }
template<int N> istream & operator>>(istream & is, ModInt<N> & b) { LL v; is >> v; b.setval(v); return is; }
template<int N> ostream & operator<<(ostream & os, const ModInt<N> & b) { return (os << b.getval()); }
// ----
template<int N = 0> struct Combination {
LL n;
vector<ModInt<N>> f;
Combination(LL nn) {
n = nn;
f.PB(1);
inc1(i, n) { f.PB(f.back() * i); }
}
ModInt<N> P(LL a, LL b) {
assert(inII(a, 0, n) && inII(b, 0, n));
return (a < b ? 0 : f[a] / f[a - b]);
}
ModInt<N> C(LL a, LL b) {
assert(inII(a, 0, n) && inII(b, 0, n));
return (a < b ? 0 : f[a] / f[a - b] / f[b]);
}
ModInt<N> H(LL a, LL b) {
assert(inII(a, 0, n) && inII(b, 0, n) && inII(a + b - 1, -1, n));
return (a == 0 ? (b == 0 ? 1 : 0) : f[a + b - 1] / f[a - 1] / f[b]);
}
};
// ---- ----
int n, m, v[100000];
ModInt<> p, q;
int main() {
ModInt<>::setmod(1e9 + 7);
cin >> n >> m >> p;
inc(i, n) { cin >> v[i]; }
sort(v, v + n, greater<int>());
p /= 100;
ModInt<> s = 0, q = 1 - p, ans = 0;
Combination<> c(n + m);
inc(i, n) { ans += s * (p ^ m) * (q ^ i) * (c.H(i + 1, m) - c.H(i, m)); s += v[i]; }
inc(j, m) { ans += s * (p ^ j) * (q ^ n) * c.H(n, j); }
cout << ans << endl;
return 0;
}
FF256grhy