結果
| 問題 | No.776 A Simple RMQ Problem |
| コンテスト | |
| ユーザー |
|
| 提出日時 | 2018-12-23 01:47:09 |
| 言語 | C++17 (gcc 13.3.0 + boost 1.89.0) |
| 結果 |
WA
|
| 実行時間 | - |
| コード長 | 6,847 bytes |
| 記録 | |
| コンパイル時間 | 2,605 ms |
| コンパイル使用メモリ | 213,672 KB |
| 最終ジャッジ日時 | 2025-01-06 19:55:06 |
|
ジャッジサーバーID (参考情報) |
judge2 / judge1 |
(要ログイン)
| ファイルパターン | 結果 |
|---|---|
| sample | AC * 2 |
| other | AC * 1 WA * 25 |
ソースコード
#include <bits/stdc++.h>
#define show(x) std::cerr << #x << " = " << (x) << std::endl
using ll = long long;
using ull = unsigned long long;
using ld = long double;
constexpr ll MOD = 1000000007LL;
template <typename T>
constexpr T INF = std::numeric_limits<T>::max() / 10;
std::mt19937 mt{std::random_device{}()};
constexpr std::size_t PC(ull v) { return v = (v & 0x5555555555555555ULL) + (v >> 1 & 0x5555555555555555ULL), v = (v & 0x3333333333333333ULL) + (v >> 2 & 0x3333333333333333ULL), v = (v + (v >> 4)) & 0x0F0F0F0F0F0F0F0FULL, static_cast<std::size_t>(v * 0x0101010101010101ULL >> 56 & 0x7f); }
constexpr std::size_t LG(ull v) { return v == 0 ? 0 : (v--, v |= (v >> 1), v |= (v >> 2), v |= (v >> 4), v |= (v >> 8), v |= (v >> 16), v |= (v >> 32), PC(v)); }
constexpr ull SZ(const ull v) { return 1ULL << LG(v); }
template <typename Base>
class LazySegmentTree
{
public:
using BaseAlgebra = Base;
using ValMonoid = typename BaseAlgebra::ValMonoid;
using OpMonoid = typename BaseAlgebra::OpMonoid;
using T = typename BaseAlgebra::T;
using F = typename BaseAlgebra::OpMonoid::T;
LazySegmentTree(const std::size_t n) : data_num(n), half(SZ(n)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id()) {}
template <typename InIt>
LazySegmentTree(const InIt first, const InIt last) : data_num(distance(first, last)), half(SZ(data_num)), value(half << 1, ValMonoid::id()), action(half << 1, OpMonoid::id())
{
copy(first, last, value.begin() + half);
for (std::size_t i = half - 1; i >= 1; i--) { up(i); }
}
T get(const std::size_t a) const { return accumulate(a, a + 1); }
void set(std::size_t a, const T& val)
{
modify(a, a + 1, OpMonoid::id()), value[a += half] = val;
while (a >>= 1) { up(a); }
}
T accumulate(const std::size_t L, const std::size_t R) const
{
auto arec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> T {
if (L <= left and right <= R) {
return value[index];
} else if (right <= L or R <= left) {
return ValMonoid::id();
} else {
return act(action[index], acc(self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right)));
}
};
return arec(arec, 1, 0, half);
}
void modify(const std::size_t L, const std::size_t R, const F& f)
{
auto mrec = [&](auto&& self, const std::size_t index, const std::size_t left, const std::size_t right) -> void {
if (L <= left and right <= R) {
this->update(index, f);
} else if (right <= L or R <= left) {
} else {
this->update(index << 1, action[index]), this->update(index << 1 | 1, action[index]);
self(self, index << 1, left, (left + right) >> 1), self(self, index << 1 | 1, (left + right) >> 1, right);
this->up(index), action[index] = OpMonoid::id();
}
};
mrec(mrec, 1, 0, half);
}
std::vector<T> data() const
{
std::vector<T> ans(data_num);
for (std::size_t i = 0; i < data_num; i++) { ans[i] = get(i); }
return ans;
}
private:
void up(const std::size_t i) { value[i] = acc(value[i << 1], value[i << 1 | 1]); }
void update(const std::size_t i, const F& f) { value[i] = act(f, value[i]), action[i] = compose(f, action[i]); }
const std::size_t data_num, half;
std::vector<T> value;
std::vector<F> action;
const ValMonoid acc{};
const OpMonoid compose{};
const BaseAlgebra act{};
};
template <typename T>
std::ostream& operator<<(std::ostream& os, const LazySegmentTree<T>& seg)
{
os << "[";
for (const auto& e : seg.data()) { os << e << ","; }
return (os << "]" << std::endl);
}
struct Max_Plus
{
using T = ll;
struct ValMonoid
{
T operator()(const T& a, const T& b) const { return std::max(a, b); }
static constexpr T id() { return -INF<T>; }
};
struct OpMonoid
{
using T = ll;
T operator()(const T& f1, const T& f2) const { return f1 + f2; }
static constexpr T id() { return 0; }
};
T operator()(const OpMonoid::T& f, const T& x) const { return f + x; }
};
struct Min_Plus
{
using T = ll;
struct ValMonoid
{
T operator()(const T& a, const T& b) const { return std::min(a, b); }
static constexpr T id() { return INF<T>; }
};
struct OpMonoid
{
using T = ll;
T operator()(const T& f1, const T& f2) const { return f1 + f2; }
static constexpr T id() { return 0; }
};
T operator()(const OpMonoid::T& f, const T& x) const { return f + x; }
};
int main()
{
std::cin.tie(0);
std::ios::sync_with_stdio(false);
int N, Q;
std::cin >> N >> Q;
std::vector<ll> a(N + 2, 0);
for (int i = 1; i <= N; i++) { std::cin >> a[i]; }
auto l = a, r = a;
for (int i = 1; i <= N + 1; i++) { l[i] += l[i - 1]; }
for (int i = N; i >= 0; i--) { r[i] += r[i + 1]; }
LazySegmentTree<Min_Plus> lseg(l.begin(), l.end());
LazySegmentTree<Min_Plus> rseg(r.begin(), r.end());
LazySegmentTree<Max_Plus> lseg2(l.begin(), l.end());
LazySegmentTree<Max_Plus> rseg2(r.begin(), r.end());
for (int q = 0; q < Q; q++) {
std::string s;
std::cin >> s;
if (s == "set") {
int i, x;
std::cin >> i >> x;
lseg.modify(i, N + 1, x - a[i]), rseg.modify(0, i + 1, x - a[i]), a[i] = x;
lseg2.modify(i, N + 1, x - a[i]), rseg2.modify(0, i + 1, x - a[i]), a[i] = x;
} else {
int l1, l2, r1, r2;
std::cin >> l1 >> l2 >> r1 >> r2, r1 = std::max(l1, r1), l2 = std::min(l2, r2);
if (l2 - 1 < r1 + 1) {
const ll lm = lseg.accumulate(l1 - 1, l2);
const ll rm = rseg.accumulate(r1 + 1, r2 + 2);
// show(lm), show(rm);
std::cout << lseg.get(N) - lm - rm << "\n";
} else {
const ll S = lseg.get(N);
ll max = -INF<ll>;
const ll m1 = lseg.accumulate(l1 - 1, r1 + 1) + rseg.accumulate(r1 + 1, r2 + 2);
const ll m2 = lseg.accumulate(l1 - 1, l2) + rseg.accumulate(l2, r2 + 2);
const ll m3 = lseg.accumulate(r1 + 1, l2) + rseg.accumulate(r1 + 1, l2);
const ll m4 = lseg2.accumulate(r1 + 1, l2) + rseg2.accumulate(r1 + 1, l2);
// show(m1), show(m2), show(m3),show(m4);
max = std::max({max, S - m1, S - m2, S - m3, m4 - S, 0LL});
std::cout << max << "\n";
}
}
// show(lseg), show(rseg);
}
return 0;
}