結果

問題 No.215 素数サイコロと合成数サイコロ (3-Hard)
ユーザー cielciel
提出日時 2015-06-04 18:58:18
言語 C++11
(gcc 11.4.0)
結果
TLE  
実行時間 -
コード長 3,465 bytes
コンパイル時間 550 ms
コンパイル使用メモリ 53,800 KB
実行使用メモリ 25,400 KB
最終ジャッジ日時 2024-07-06 14:07:55
合計ジャッジ時間 10,923 ms
ジャッジサーバーID
(参考情報)
judge3 / judge4
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 TLE -
testcase_01 -- -
権限があれば一括ダウンロードができます
コンパイルメッセージ
main.cpp: In function ‘int main()’:
main.cpp:98:14: warning: ignoring return value of ‘int scanf(const char*, ...)’ declared with attribute ‘warn_unused_result’ [-Wunused-result]
   98 |         scanf("%lld%d%d",&N,&P,&C);
      |         ~~~~~^~~~~~~~~~~~~~~~~~~~~

ソースコード

diff #

#include <vector>
using namespace std;
typedef long long LL;
#define reE(i,a,b) for(auto (i)=(a);(i)<=(b);(i)++)
#define rE(i,b) reE(i,0,b)
#define reT(i,a,b) for(auto (i)=(a);(i)<(b);(i)++)
#define rT(i,b) reT(i,0,b)
#define rep(i,a,b) reE(i,a,b);
#define rev(i,a,b) for(auto (i)=(b)-1;(i)>=(a);(i)--)
#define itr(i,b) for(auto (i)=(b).begin();(i)!=(b).end();++(i))
#define LL long long
#define all(b) (b).begin(),(b).end()

/*
使い方
M項間漸化式のN項目を計算する。Nの最小は1。
a[N]=sum(c[i]*a[N-M+i-1])の形。
Mrが本体、Xは使わなくてもできる問題はある。(MODを使わないint,LLなど)
Xは半環を満たすものならなんでもよい、+,*のオーバーロードにMODをねじこむ。
コンストラクタに初項、係数、M,*の単位元、+の単位元の順で引数を与える。
あとはcalcにNを与えるだけ。
*/
#define MAX_LOGN 60
template <class T>
struct Mr{
	vector<T> first;
	vector<T> C;
	vector<vector<T>> bin;
	T zero,one;
	int M;
	//n(1,,,2M)をn(1,,,M)に修正、O(M^2)
	void form(vector<T> &n){
		rev(i, M + 1, 2 * M + 1){
			reE(j, 1, M)n[i - j] = (n[i - j] + (C[M - j] * n[i]));
			n[i] = zero;
		}
	}
	//lとrを足し合わせる、O(M^2)
	void add(vector<T> &l, vector<T> &r, vector<T> &ans){
		reE(i, 1, 2 * M)ans[i] = zero;
		reE(i, 1, M)reE(j, 1, M)ans[i + j] = (ans[i + j] + (l[i] * r[j]));
		form(ans);
	}
	//初期化、O(M*MAX_LOGN)
	Mr(const vector<T>& f,const vector<T>& c,int m,T e1,T e0){
		M = m;
		first.reserve(M + 1);C.reserve(M);
		zero = e0, one = e1;
		first.push_back(zero); 
		rT(i, M){ first.push_back(f[i]); C.push_back(c[i]); }
		bin.resize(MAX_LOGN);
		rT(i, MAX_LOGN)bin[i].resize(2*M+1);
		rE(i, 2*M)bin[0][i] = zero; bin[0][1] = one;
		reT(i,1, MAX_LOGN){
			add(bin[i - 1], bin[i - 1], bin[i]);
		}
	}
	//N項目の計算、戻り値がTの形であることに注意、O(M^2*logN)
	T calc(LL n){
		n--;
		vector<T> tmp,result = bin[0];
		for (int b = 0; n; b++,n>>=1)
			if (1 & n){ tmp = result; add(tmp, bin[b], result); }
		T ans = zero;
		reE(i, 1, M)ans = ans + (result[i] * first[i]);
		return ans;
	}
};
//テンプレート、デフォルトコンストラクタのオーバーロードを忘れない
#define MOD 1000000007
struct X{
	LL val;
	X(LL v){ val = v; }
	X(){ val = 0; }
	LL operator=(const X &another){ return val = another.val; }
	LL operator*(const X &another)const{ return (val*another.val)%MOD; }
	LL operator+(const X &another)const{ return (val+another.val)%MOD; }
};

///

vector<long long> combination(const vector<int> &sides,int N){
	int lastside=sides[sides.size()-1];
	vector<vector<long long>>m(N+1);
	for(int i=0;i<=N;i++)m[i].resize(N*lastside+1);
	m[0][0]=1;
	//without duplicate
	for(auto &e:sides)for(int n=0;n<N;n++)for(int i=0;i<=n*lastside;i++)m[n+1][i+e]=(m[n+1][i+e]+m[n][i])%MOD;
	//with duplicate (can compress to 1D)
	//for(int n=0;n<N;n++)for(int i=0;i<=n*lastside;i++)for(auto &e:sides)m[n+1][i+e]=(m[n+1][i+e]+m[n][i])%MOD;
	return m[N];
}

#include <cstdio>
int main(){
	long long N;
	int P,C;
	scanf("%lld%d%d",&N,&P,&C);
	auto vp=combination({2,3,5,7,11,13},P);
	auto vc=combination({4,6,8,9,10,12},C);
	int M=P*13+C*12;
	vector<long long>single(M+1);
	for(int x=0;x<=P*13;x++)for(int y=0;y<=C*12;y++)single[x+y]=(single[x+y]+vp[x]*vc[y])%MOD;

	vector<X> A(M),V(M);
	for(int i=0;i<M;i++){
		A[i]=X(1);
		V[i]=X(single[M-i]);
	}
	Mr<X> mr(A,V,M,X(1),X(0));
	printf("%lld\n",mr.calc(N+M).val);
}
0