結果

問題 No.372 It's automatic
ユーザー tancahn2380tancahn2380
提出日時 2019-01-01 18:34:18
言語 C++11
(gcc 11.4.0)
結果
AC  
実行時間 4,598 ms / 6,000 ms
コード長 2,053 bytes
コンパイル時間 1,567 ms
コンパイル使用メモリ 159,220 KB
実行使用メモリ 5,248 KB
最終ジャッジ日時 2024-11-07 18:25:19
合計ジャッジ時間 56,546 ms
ジャッジサーバーID
(参考情報)
judge2 / judge5
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 2 ms
5,248 KB
testcase_01 AC 2 ms
5,248 KB
testcase_02 AC 2 ms
5,248 KB
testcase_03 AC 2 ms
5,248 KB
testcase_04 AC 4,401 ms
5,248 KB
testcase_05 AC 4,400 ms
5,248 KB
testcase_06 AC 4,402 ms
5,248 KB
testcase_07 AC 4,406 ms
5,248 KB
testcase_08 AC 4,409 ms
5,248 KB
testcase_09 AC 4,399 ms
5,248 KB
testcase_10 AC 4,434 ms
5,248 KB
testcase_11 AC 4,598 ms
5,248 KB
testcase_12 AC 4,477 ms
5,248 KB
testcase_13 AC 4,393 ms
5,248 KB
testcase_14 AC 4,386 ms
5,248 KB
testcase_15 AC 4,391 ms
5,248 KB
testcase_16 AC 2 ms
5,248 KB
testcase_17 AC 3 ms
5,248 KB
testcase_18 AC 3 ms
5,248 KB
testcase_19 AC 2 ms
5,248 KB
testcase_20 AC 2 ms
5,248 KB
testcase_21 AC 248 ms
5,248 KB
testcase_22 AC 252 ms
5,248 KB
testcase_23 AC 250 ms
5,248 KB
testcase_24 AC 251 ms
5,248 KB
testcase_25 AC 248 ms
5,248 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

# include "bits/stdc++.h"
using namespace std;
using LL = long long;
using ULL = unsigned long long;
const double PI = acos(-1);
template<class T>constexpr T INF() { return ::std::numeric_limits<T>::max(); }
template<class T>constexpr T HINF() { return INF<T>() / 2; }
template <typename T_char>T_char TL(T_char cX) { return tolower(cX); };
template <typename T_char>T_char TU(T_char cX) { return toupper(cX); };
typedef pair<LL, LL> pii;
const int vy[] = { -1, -1, -1, 0, 1, 1, 1, 0 }, vx[] = { -1, 0, 1, 1, 1, 0, -1, -1 };
const int dx[4] = { 0,1,0,-1 }, dy[4] = { 1,0,-1,0 };
int popcnt(unsigned long long n) { int cnt = 0; for (int i = 0; i < 64; i++)if ((n >> i) & 1)cnt++; return cnt; }
int d_sum(LL n) { int ret = 0; while (n > 0) { ret += n % 10; n /= 10; }return ret; }
int d_cnt(LL n) { int ret = 0; while (n > 0) { ret++; n /= 10; }return ret; }
LL gcd(LL a, LL b) { if (b == 0)return a; return gcd(b, a%b); };
LL lcm(LL a, LL b) { LL g = gcd(a, b); return a / g*b; };
# define ALL(qpqpq)           (qpqpq).begin(),(qpqpq).end()
# define UNIQUE(wpwpw)        sort(ALL((wpwpw)));(wpwpw).erase(unique(ALL((wpwpw))),(wpwpw).end())
# define LOWER(epepe)         transform(ALL((epepe)),(epepe).begin(),TL<char>)
# define UPPER(rprpr)         transform(ALL((rprpr)),(rprpr).begin(),TU<char>)
# define FOR(i,tptpt,ypypy)   for(LL i=(tptpt);i<(ypypy);i++)
# define REP(i,upupu)         FOR(i,0,upupu)
# define INIT                 std::ios::sync_with_stdio(false);std::cin.tie(0)

const int mod = 1e9 + 7;
string s;
int m;

int dp[2][20202];
int cnt;
int main(){
    INIT;
    cin >> s >> m;
    REP(i, (int)s.size()){
        memset(dp[(i + 1)%2],0 , sizeof(dp[(i + 1)%2]));
        REP(j, m){
            dp[(i + 1)%2][(j * 10 + s[i] - '0')%m] += dp[i%2][j];
            dp[(i + 1)%2][(j * 10 + s[i] - '0')%m] %= mod;
            dp[(i + 1)%2][j] += dp[i%2][j];
            dp[(i + 1)%2][j] %= mod;
        }
        if(s[i] == '0')cnt++;
        else dp[(i + 1)%2][(s[i] - '0')%m]++;
    }
    cout << (dp[(int)s.size()%2][0] + cnt)%mod << endl;
}
0