結果
問題 | No.194 フィボナッチ数列の理解(1) |
ユーザー | 👑 hos.lyric |
提出日時 | 2019-01-10 16:30:07 |
言語 | D (dmd 2.106.1) |
結果 |
AC
|
実行時間 | 23 ms / 5,000 ms |
コード長 | 3,129 bytes |
コンパイル時間 | 1,006 ms |
コンパイル使用メモリ | 118,788 KB |
実行使用メモリ | 18,688 KB |
最終ジャッジ日時 | 2024-06-13 02:34:13 |
合計ジャッジ時間 | 2,561 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 1 ms
5,248 KB |
testcase_01 | AC | 1 ms
5,376 KB |
testcase_02 | AC | 2 ms
5,376 KB |
testcase_03 | AC | 1 ms
5,376 KB |
testcase_04 | AC | 2 ms
5,376 KB |
testcase_05 | AC | 2 ms
5,376 KB |
testcase_06 | AC | 2 ms
5,376 KB |
testcase_07 | AC | 2 ms
5,376 KB |
testcase_08 | AC | 1 ms
5,376 KB |
testcase_09 | AC | 2 ms
5,376 KB |
testcase_10 | AC | 2 ms
5,376 KB |
testcase_11 | AC | 2 ms
5,376 KB |
testcase_12 | AC | 2 ms
5,376 KB |
testcase_13 | AC | 1 ms
5,376 KB |
testcase_14 | AC | 1 ms
5,376 KB |
testcase_15 | AC | 3 ms
5,376 KB |
testcase_16 | AC | 2 ms
5,376 KB |
testcase_17 | AC | 2 ms
5,376 KB |
testcase_18 | AC | 2 ms
5,376 KB |
testcase_19 | AC | 2 ms
5,376 KB |
testcase_20 | AC | 19 ms
18,048 KB |
testcase_21 | AC | 23 ms
18,688 KB |
testcase_22 | AC | 17 ms
18,048 KB |
testcase_23 | AC | 3 ms
5,376 KB |
testcase_24 | AC | 12 ms
10,240 KB |
testcase_25 | AC | 11 ms
9,472 KB |
testcase_26 | AC | 11 ms
9,344 KB |
testcase_27 | AC | 11 ms
10,880 KB |
testcase_28 | AC | 4 ms
5,376 KB |
testcase_29 | AC | 17 ms
17,152 KB |
testcase_30 | AC | 2 ms
5,376 KB |
testcase_31 | AC | 1 ms
5,376 KB |
testcase_32 | AC | 2 ms
5,376 KB |
testcase_33 | AC | 2 ms
5,376 KB |
testcase_34 | AC | 2 ms
5,376 KB |
testcase_35 | AC | 2 ms
5,376 KB |
testcase_36 | AC | 2 ms
5,376 KB |
testcase_37 | AC | 1 ms
5,376 KB |
testcase_38 | AC | 2 ms
5,376 KB |
testcase_39 | AC | 1 ms
5,376 KB |
ソースコード
import std.conv, std.stdio, std.string; import std.algorithm, std.array, std.bigint, std.container, std.math, std.range, std.regex, std.typecons; import core.bitop; class EOFException : Throwable { this() { super("EOF"); } } string[] tokens; string readToken() { for (; tokens.empty; ) { if (stdin.eof) throw new EOFException; tokens = readln.split; } auto token = tokens[0]; tokens.popFront; return token; } int readInt() { return readToken().to!int; } long readLong() { return readToken().to!long; } real readReal() { return readToken().to!real; } void chmin(T)(ref T t, in T f) { if (t > f) t = f; } void chmax(T)(ref T t, in T f) { if (t < f) t = f; } int binarySearch(T)(in T[] as, in bool delegate(T) test) { int low = -1, upp = cast(int)(as.length); for (; low + 1 < upp; ) { int mid = (low + upp) >> 1; (test(as[mid]) ? low : upp) = mid; } return upp; } int lowerBound(T)(in T[] as, in T val) { return as.binarySearch((T a) => (a < val)); } int upperBound(T)(in T[] as, in T val) { return as.binarySearch((T a) => (a <= val)); } immutable MO = 10L^^9 + 7; long solve(long[] coef, long[] initial, long e) { debug { writefln("coef = %s", coef); writefln("initial = %s", initial); writefln("e = %s", e); } const n = cast(int)(coef.length) - 1; long[] multiply(long[] a, long[] b) { auto ret = new long[2 * n]; foreach (i; 0 .. n) foreach (j; 0 .. n) { (ret[i + j] += a[i] * b[j]) %= MO; } foreach_reverse (i; n .. 2 * n) { foreach (k; 1 .. n + 1) { (ret[i - k] += coef[k] * ret[i]) %= MO; } } ret.length = n; return ret; } auto x = new long[n]; auto y = new long[n]; x[1] = 1; y[0] = 1; for (; e; e >>= 1) { if (e & 1) { y = multiply(y, x); } x = multiply(x, x); } long ret; foreach (i; 0 .. n) { (ret += y[i] * initial[i]) %= MO; } return ret; } int N; long K; long[] A; void main() { try { for (; ; ) { N = readInt(); K = readLong(); A = new long[N]; foreach (i; 0 .. N) { A[i] = readLong(); } long ansF, ansS; if (N <= 10^^4 && K <= 10^^6) { auto f = new long[cast(int)(K + 1)]; auto s = new long[cast(int)(K + 1)]; foreach (i; 1 .. N + 1) { f[i] = A[i - 1]; s[i] = (s[i - 1] + f[i]) % MO; } foreach (i; N + 1 .. cast(int)(K) + 1) { f[i] = (s[i - 1] - s[i - (N + 1)]) % MO; s[i] = (s[i - 1] + f[i]) % MO; } ansF = f[cast(int)(K)]; ansS = s[cast(int)(K)]; } else { { auto coef = new long[N + 1]; coef[1 .. N + 1] = 1; ansF = solve(coef, A, K - 1); } { auto coef = new long[N + 2]; coef[1] = 2; coef[N + 1] = -1; auto ASum = new long[N + 1]; foreach (i; 0 .. N) { ASum[i + 1] = (ASum[i] + A[i]) % MO; } ansS = solve(coef, ASum, K); } } ansF = (ansF % MO + MO) % MO; ansS = (ansS % MO + MO) % MO; writeln(ansF, " ", ansS); } } catch (EOFException e) { } }