結果
問題 | No.414 衝動 |
ユーザー | むらため |
提出日時 | 2019-01-19 20:56:10 |
言語 | Nim (2.0.2) |
結果 |
AC
|
実行時間 | 3 ms / 1,000 ms |
コード長 | 3,073 bytes |
コンパイル時間 | 4,366 ms |
コンパイル使用メモリ | 66,512 KB |
実行使用メモリ | 6,824 KB |
最終ジャッジ日時 | 2024-11-15 09:21:18 |
合計ジャッジ時間 | 5,241 ms |
ジャッジサーバーID (参考情報) |
judge5 / judge3 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,824 KB |
testcase_04 | AC | 2 ms
6,816 KB |
testcase_05 | AC | 3 ms
6,820 KB |
testcase_06 | AC | 2 ms
6,816 KB |
testcase_07 | AC | 1 ms
6,820 KB |
testcase_08 | AC | 3 ms
6,820 KB |
testcase_09 | AC | 2 ms
6,820 KB |
testcase_10 | AC | 1 ms
6,820 KB |
testcase_11 | AC | 2 ms
6,816 KB |
testcase_12 | AC | 2 ms
6,820 KB |
コンパイルメッセージ
/home/judge/data/code/Main.nim(1, 26) Warning: imported and not used: 'algorithm' [UnusedImport] /home/judge/data/code/Main.nim(1, 17) Warning: imported and not used: 'strutils' [UnusedImport]
ソースコード
import sequtils,strutils,algorithm,math const INF = int.high div 4 proc powerWhenTooBig(x,n:int,modulo:int = 0): int = proc mul(x,n,modulo:int):int = if n == 0: return 0 if n == 1: return x result = mul(x,n div 2,modulo) mod modulo result = (result * 2) mod modulo result = (result + x * (n mod 2 == 1).int) mod modulo if n == 0: return 1 if n == 1: return x let pow_2 = powerWhenTooBig(x,n div 2,modulo) odd = if n mod 2 == 1: x else: 1 if modulo > 0: const maybig = int.high.float.sqrt.int div 2 if pow_2 > maybig or odd > maybig: result = mul(pow_2,pow_2,modulo) result = mul(result,odd,modulo) else: result = (pow_2 * pow_2) mod modulo result = (result * odd) mod modulo else: return pow_2 * pow_2 * odd proc millerRabinIsPrime(n:int):bool = # O(log n) proc ctz(n:int):int{.importC: "__builtin_ctzll", noDecl .} # 01<0000> -> 4 proc power(x,n:int,modulo:int = 0): int = if n == 0: return 1 if n == 1: return x let pow_2 = power(x,n div 2,modulo) result = pow_2 * pow_2 * (if n mod 2 == 1: x else: 1) if modulo > 0: result = result mod modulo if n <= 1 : return false if n div 2 == 0: return false if n == 2 or n == 3 or n == 5: return true let s = ctz(n - 1) d = (n - 1) div (1 shl s) var a_list = @[2, 7, 61] if n >= 4_759_123_141 and n < 341_550_071_728_321: a_list = @[2, 3, 5, 7, 11, 13, 17] if n in a_list : return true for a in a_list: if powerWhenTooBig(a,d,n) == 1 : continue let notPrime = toSeq(0..<s).allIt(powerWhenTooBig(a,d*(1 shl it),n) != n-1) if notPrime : return false return true proc squareFormFactor(n:int):int = if millerRabinIsPrime(n) : return n proc check(k:int):int = proc √(x:int):int = x.float.sqrt.int if n <= 1 : return n if n mod 2 == 0 : return 2 if √(n) * √(n) == n : return √(n) var P,Q = newSeq[int]() block: P &= √(k * n) Q &= 1 Q &= k * n - P[0]*P[0] while √(Q[^1]) * √(Q[^1]) != Q[^1]: let b = (√(k * n) + P[^1] ) div Q[^1] P &= b * Q[^1] - P[^1] Q &= Q[^2] + b * (P[^2] - P[^1]) block: if Q[^1] == 0 : return check(k + 1) let b = (√(k * n) - P[^1] ) div Q[^1] P0 = b * √(Q[^1]) + P[^1] Q0 = √(Q[^1]) Q1 = (k*n - P0*P0) div Q0 (P,Q) = (@[P0], @[ Q0, Q1 ]) while true: let b = (√(k * n) + P[^1] ) div Q[^1] P &= b * Q[^1] - P[^1] Q &= Q[^2] + b * (P[^2] - P[^1]) if P[^1] == P[^2] or Q[^1] == Q[^2]: break let f = gcd(n,P[^1]) if f != 1 and f != n : return f else: return check(k+1) return check(1) proc getchar_unlocked():char {. importc:"getchar_unlocked",header: "<stdio.h>" .} proc scan(): int = while true: var k = getchar_unlocked() if k < '0': break result = 10 * result + k.ord - '0'.ord proc main() = let m = scan() if m == 1: echo "1 1" return if m.millerRabinIsPrime(): echo 1," ",m return let f = squareFormFactor(m) echo f," ",m div f main()