結果
問題 | No.3030 ミラー・ラビン素数判定法のテスト |
ユーザー | syaro |
提出日時 | 2019-01-22 00:45:10 |
言語 | C++14 (gcc 12.3.0 + boost 1.83.0) |
結果 |
WA
|
実行時間 | - |
コード長 | 9,104 bytes |
コンパイル時間 | 1,131 ms |
コンパイル使用メモリ | 100,800 KB |
実行使用メモリ | 6,820 KB |
最終ジャッジ日時 | 2024-11-18 16:35:53 |
合計ジャッジ時間 | 1,996 ms |
ジャッジサーバーID (参考情報) |
judge3 / judge5 |
(要ログイン)
テストケース
テストケース表示入力 | 結果 | 実行時間 実行使用メモリ |
---|---|---|
testcase_00 | AC | 2 ms
6,816 KB |
testcase_01 | AC | 2 ms
6,820 KB |
testcase_02 | AC | 2 ms
6,820 KB |
testcase_03 | AC | 2 ms
6,820 KB |
testcase_04 | WA | - |
testcase_05 | WA | - |
testcase_06 | WA | - |
testcase_07 | WA | - |
testcase_08 | WA | - |
testcase_09 | WA | - |
ソースコード
/* <rab:include(prime.hpp)> */ /* <rab:include(base.hpp)> */ #pragma GCC optimize ("O3") void solve(); /* この関数に問題ごとの処理を書く */ #if defined(EBUG) && !defined(ONLINE_JUDGE) #define debug true #else #define NDEBUG /* <cassert>のincludeより前に定義する必要がある */ #define debug false #endif #include<algorithm> #include<iomanip> #include<iostream> #include<map> #include<numeric> #include<queue> #include<vector> #ifdef __cpp_lib_execution #include<execution> #endif #include<cassert> #include<cstdio> #include<cstdlib> using namespace std; using LL = long long; using ULL = unsigned long long; #define int LL /* 標準ライブラリのincludeが終わってから書き換える */ #define times(n, i) uptil(0, n, i) #define rtimes(n, i) downto((n) - 1, 0, i) #define upto(f, t, i) for(auto rab_base_dest = (t), i = decltype(t)(f); i <= rab_base_dest; i++) #define uptil(f, t, i) for(auto rab_base_dest = (t), i = decltype(t)(f); i < rab_base_dest; i++) #define downto(f, t, i) for(auto rab_base_dest = decltype(f)(t), i = (f); i >= rab_base_dest; i--) #define downtil(f, t, i) for(auto rab_base_dest = decltype(f)(t), i = (f); i > rab_base_dest; i--) #define iter(v) begin(v), end(v) #define citer(v) cbegin(v), cend(v) #if debug #define _GLIBCXX_DEBUG #define _LIBCPP_DEBUG 2 #define _LIBCPP_DEBUG2 2 #define ln << endl #else #define ln << '\n' #endif #define tb << '\t' #define sp << ' ' #ifdef __cpp_lib_execution #if debug #define PARABLE execution::par_unseq, #else #define PARABLE execution::seq, #endif #else #define PARABLE /* none */ #endif #define CS const #define CX constexpr #define IL inline #define RT return #define TL template #define TN typename #define lambda [&] /* <rab:include(typedefs.hpp)> */ struct unit{}; using LD=long double; TL<TN T>using vec=vector<T>; TL<TN T>using vvec=vec<vec<T>>; TL<TN T>using vvvec=vec<vvec<T>>; TL<TN T>using vvvvec=vec<vvvec<T>>; /* @rab:typedefs:dynamic */ using VI = vec<int>; using VB = vec<bool>; using HII = map<int,int>; /* </rab:include(typedefs.hpp)> */ #define foldl accumulate #define scanl partial_sum TL<TN T>IL bool amax(T&v,CS T&a){RT v<a&&(v=a,true);} TL<TN T>IL bool amin(T&v,CS T&a){RT v>a&&(v=a,true);} namespace kpl { template<class V, class W> static IL void append(V& v, const W& w) { copy(PARABLE citer(w), back_inserter(v)); } template<class V> static IL auto flatten(const V& xss, unsigned reserve_size = 0) -> vector<decltype(*begin(*begin(xss)))> { decltype(flatten(xss)) ret; ret.reserve(reserve_size); for(const auto& xs : xss) append(ret, xs); ret.shrink_to_fit(); return move(ret); } template<class I> static inline bool is_in(I x, I l, I r) { return l <= x && x < r; } } /* <rab:include(util.hpp)> */ #ifndef __cpp_lib_exchange_function // #define __cpp_lib_exchange_function 201304L #define exchange exchange_RAB TL<class T, class U=T> T exchange(T& t, U&& u) { T ret = move(t); t = forward<U>(u); RT ret; } #endif #ifndef __cpp_lib_clamp // #define __cpp_lib_clamp 201603L #define clamp clamp_RAB TL<class T> CX CS T& clamp(CS T& a, CS T& mn, CS T& mx) { RT a < mn ? mn : a > mx ? mx : a; } #endif template<class V> void uniq_after_sort(V& v) { v.erase(unique(iter(v)), v.end()); } template<class V> void sort_and_uniq(V& v) { sort(iter(v)); v.erase(unique(iter(v)), v.end()); } /* </rab:include(util.hpp)> */ /* <rab:include(mod.hpp)> */ #ifdef MOD #if !defined(FORCE_MOD) && MOD != 1000000007 && MOD != 1000000009 && MOD != 998244353 #error unknown mod MOD; if you really want to use (MOD) as mod, define FORCE_MOD. #endif #else #define MOD 1000000007 #endif /* <rab:include(power.hpp)> */ TL<class T> T power(T x,LL n){T rt(1);for(;n;n/=2){if(n%2)rt*=x;x*=x;}RT rt;} int pow_mod(int x,int n,int m){int rt=1;for(;n;n/=2){if(n%2)rt=rt*x%m;x=x*x%m;}RT rt;} /* </rab:include(power.hpp)> */ IL CX int modulo(int a,int m){RT(a%=m,a>=0?a:a+m);} TL<ULL mod=MOD>class MInt{ /* int with modulo. // `mod` must be a prime for `log`. `mod` must be coprime to `val` for `inv` and to `m.val` for `operator/` and `operator/=`. */ /*! https://ei1333.github.io/luzhiled/snippets/other/mod-int.html */ public: int val; CX MInt():val(0){} explicit CX MInt(int v):val(modulo(v,mod)){} MInt&operator+=(CS MInt&m){val+=m.val;if(val>=mod)val-=mod;RT*this;} MInt&operator-=(CS MInt&m){val-=m.val;if(val<0)val+=mod;RT*this;} MInt&operator*=(CS MInt&m){val=val*m.val%mod;RT*this;} MInt&operator/=(CS MInt&m){val=val*m.inv().val%mod;RT*this;} MInt operator+(CS MInt&m)CS{RT MInt(*this)+=m;} MInt operator-(CS MInt&m)CS{RT MInt(*this)-=m;} MInt operator*(CS MInt&m)CS{RT MInt(*this)*=m;} MInt operator/(CS MInt&m)CS{RT MInt(*this)/=m;} MInt operator-()CS{MInt m;m.val=val?mod-val:0;RT m;} bool operator==(CS MInt&m)CS{RT val==m.val;} bool operator!=(CS MInt&m)CS{RT val!=m.val;} //MInt pow(int n)CS{MInt x(*this),rt(1);while(n){if(n%2)rt*=x;x*=x;n/=2;}RT rt;} MInt pow(int n)CS{RT power(*this,n);} MInt inv()CS{int a=val,b=mod,x=1,y=0,t;while(b){t=a/b;swap(b,a-=t*b);swap(y,x-=t*y);}RT(MInt)x;} friend ostream&operator<<(ostream&o,CS MInt<mod>&m){RT o<<m.val;} friend istream&operator>>(istream&i,MInt<mod>&m){int v;i>>v;m=MInt<mod>(v);RT i;} }; using mint=MInt<>; constexpr mint operator"" _m(ULL n){RT mint(n);} constexpr MInt<998244353>operator"" _m998244353(ULL n){RT MInt<998244353>(n);} constexpr MInt<1000000007>operator"" _m1e9_7(ULL n){RT MInt<1000000007>(n);} constexpr MInt<1000000009>operator"" _m1e9_9(ULL n){RT MInt<1000000009>(n);} ////#pragma rab:gsub \b(\d+)m\b mint(\1) /* </rab:include(mod.hpp)> */ /* <rab:include(debug.hpp)> */ TL<class T> IL istream&operator>>(istream&s,vec<T>&v){for(auto&&p:v)s>>p;RT s;} TL<class T,class S> IL ostream&operator<<(ostream&s,CS pair<T,S>&p){RT s<<"("<<p.first<<","<<p.second<<")";} TL<class T> IL ostream&operator<<(ostream&,CS vec<T>&); TL<class T,class S> IL ostream&operator<<(ostream&,CS map<T,S>&); #define DEFINE_ITER_OUTPUT(s,x,sep){int i=0;for(CS auto&x##0_elem:x){if(i++)s<<sep;s<<x##0_elem;}RT s;} TL<class T> IL ostream&operator<<(ostream&s,CS vec<T>&v)DEFINE_ITER_OUTPUT(s,v,' ') TL<class T,class S> IL ostream&operator<<(ostream&s,CS map<T,S>&m)DEFINE_ITER_OUTPUT(s,m,' ') TL<class T> IL ostream&operator<<(ostream&s,CS vec<vec<T>>&w)DEFINE_ITER_OUTPUT(s,w,'\n') TL<class T,class S> IL ostream&operator<<(ostream&s,CS vec<map<T,S>>&v)DEFINE_ITER_OUTPUT(s,v,'\n') /* </rab:include(debug.hpp)> */ signed main() { if(debug) cerr << "MOD: " << (MOD) ln; if(!debug) { cin.tie(0); ios::sync_with_stdio(0); } cout << fixed << setprecision(20); cerr << fixed << setprecision(20); solve(); return 0; } /* </rab:include(base.hpp)> */ /* N < 2**20: brute-force O(√N) otherwise: Miller-Rabin primality test O(11(logN)^2); 64bit以上で理論的にはO((logN)^4) */ /*! https://en.wikipedia.org/wiki/Miller%E2%80%93Rabin_primality_test http://joisino.hatenablog.com/entry/2017/08/03/210000 https://ja.wikipedia.org/wiki/%E3%83%9F%E3%83%A9%E3%83%BC%E2%80%93%E3%83%A9%E3%83%93%E3%83%B3%E7%B4%A0%E6%95%B0%E5%88%A4%E5%AE%9A%E6%B3%95 */ VI rab_prime_mr_as = { 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 }; bool is_prime(int n) { assert(n >= 0); if(n <= 1) return false; /*if(n % 2 == 0) { return n == 2; } if(n % 3 == 0) { return n == 3; } if(n < (1<<20)) { for(int i = 5; i * i <= n; i += 6) { if(n % i == 0 || n % (i + 2) == 0) { return false; } } return true; } else*/ { int d = n - 1, s = 0; while(d % 2 == 0) { d /= 2; ++s; } for(int a : rab_prime_mr_as) { if(n <= a) return true; if(pow_mod(a, d, n) == 1) continue; times(s, r) { /* d<<rは(n-1)/2以下だからintに収まる */ if(pow_mod(a, d << r, n) == n - 1) goto next_a; } if(debug) cerr << '#' << __LINE__ ln << " n: " << (n) ln << " a: " << (a) ln << " d: " << (d) ln << " s: " << (s) ln; return false; next_a:; } return true; } } /* O(NloglogN) */ VB are_primes(int n) { assert(n >= 0); VB ret(n + 1, true); ret[0] = false; if(n == 0) { return ret; } ret[1] = false; for(int i = 2; i * i < n; ++i) if(ret[i]) { for(int j = i * 2; j < n; j += i) { ret[j] = false; } } return ret; } /*- verification: ok https://atcoder.jp/contests/arc004/submissions/4016291 */ HII prime_factor(int n) { HII ret; if(n <= 1) { return ret; } #define rab_prime_factor_loop_body(x) \ while(n % (x) == 0) { ++ret[(x)]; n /= (x); } rab_prime_factor_loop_body(2); rab_prime_factor_loop_body(3); for(int i = 5; i * i <= n; i += 6) { rab_prime_factor_loop_body(i); rab_prime_factor_loop_body(i + 2); } if(n > 1) ++ret[n]; return ret; } /* </rab:include(prime.hpp)> */ void solve() { // NN(X) /* <foxy.memo-area> */ int N;cin>>N;VI X(N);times(N,Ri_0){cin>>X[Ri_0];} /* </foxy.memo-area> */ times(N, i) cout << X[i] sp << (int)is_prime(X[i]) ln; } /* <rab:gen/> */