結果

問題 No.584 赤、緑、青の色塗り
ユーザー 👑 hos.lyrichos.lyric
提出日時 2019-01-29 08:30:04
言語 D
(dmd 2.106.1)
結果
WA  
実行時間 -
コード長 3,657 bytes
コンパイル時間 940 ms
コンパイル使用メモリ 119,552 KB
実行使用メモリ 7,000 KB
最終ジャッジ日時 2024-06-13 03:49:04
合計ジャッジ時間 3,761 ms
ジャッジサーバーID
(参考情報)
judge2 / judge3
このコードへのチャレンジ
(要ログイン)

テストケース

テストケース表示
入力 結果 実行時間
実行使用メモリ
testcase_00 AC 5 ms
6,816 KB
testcase_01 AC 6 ms
6,944 KB
testcase_02 AC 6 ms
6,944 KB
testcase_03 AC 6 ms
6,944 KB
testcase_04 AC 6 ms
6,944 KB
testcase_05 AC 6 ms
6,992 KB
testcase_06 WA -
testcase_07 AC 6 ms
6,940 KB
testcase_08 AC 6 ms
6,944 KB
testcase_09 AC 6 ms
6,944 KB
testcase_10 AC 6 ms
6,944 KB
testcase_11 AC 6 ms
6,940 KB
testcase_12 AC 5 ms
6,940 KB
testcase_13 AC 6 ms
6,940 KB
testcase_14 AC 15 ms
6,944 KB
testcase_15 AC 6 ms
6,944 KB
testcase_16 AC 13 ms
6,944 KB
testcase_17 AC 10 ms
6,944 KB
testcase_18 AC 7 ms
6,940 KB
testcase_19 AC 1,791 ms
6,940 KB
権限があれば一括ダウンロードができます

ソースコード

diff #

import std.conv, std.functional, std.stdio, std.string;
import std.algorithm, std.array, std.bigint, std.container, std.math, std.numeric, std.range, std.regex, std.typecons;
import core.bitop;

class EOFException : Throwable { this() { super("EOF"); } }
string[] tokens;
string readToken() { for (; tokens.empty; ) { if (stdin.eof) { throw new EOFException; } tokens = readln.split; } auto token = tokens.front; tokens.popFront; return token; }
int readInt() { return readToken.to!int; }
long readLong() { return readToken.to!long; }
real readReal() { return readToken.to!real; }

bool chmin(T)(ref T t, in T f) { if (t > f) { t = f; return true; } else { return false; } }
bool chmax(T)(ref T t, in T f) { if (t < f) { t = f; return true; } else { return false; } }

int binarySearch(alias pred, T)(in T[] as) { int lo = -1, hi = cast(int)(as.length); for (; lo + 1 < hi; ) { const mid = (lo + hi) >> 1; (unaryFun!pred(as[mid]) ? hi : lo) = mid; } return hi; }
int lowerBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a >= val)); }
int upperBound(T)(in T[] as, T val) { return as.binarySearch!(a => (a > val)); }


enum MO = 1000000007L;
enum LIM = 10^^5;

long[] inv, fac, invFac, two;
void prepare() {
  inv = new long[LIM];
  fac = new long[LIM];
  invFac = new long[LIM];
  inv[1] = 1;
  foreach (i; 2 .. LIM) {
    inv[i] = MO - ((MO / i) * inv[cast(size_t)(MO % i)]) % MO;
  }
  fac[0] = invFac[0] = 1;
  foreach (i; 1 .. LIM) {
    fac[i] = (fac[i - 1] * i) % MO;
    invFac[i] = (invFac[i - 1] * inv[i]) % MO;
  }
  
  two = new long[LIM];
  two[0] = 1;
  foreach (i; 1 .. LIM) {
    two[i] = (two[i - 1] * 2) % MO;
  }
}

int N, A, B, C;

void main() {
  prepare();
  
  try {
    for (; ; ) {
      N = readInt();
      A = readInt();
      B = readInt();
      C = readInt();
      long ans;
      if (A + B + C <= (2 * N + 2) / 3) {
        const white = N - (A + B + C);
        debug {
          writeln("white = ", white);
        }
        /*
          b + c <= A
          c + a <= B
          a + b <= C
          ((A + B + C) - (a + b + c)) blocks
          2^(a + b + c)
          (A + B + C)! / (a! b! c! (A - b - c)! (B - c - a)! (C - a - b)!)
        */
        long calc(int x) {
          if (x >= 1 && white >= x - 1) {
            const n = x + 1;
            const k = white - (x - 1);
            long ret = 1;
            (ret *= fac[n + k - 1]) %= MO;
            (ret *= invFac[k]) %= MO;
            (ret *= invFac[n - 1]) %= MO;
            return ret;
          } else {
            return 0;
          }
        }
        debug {
          foreach (x; 0 .. 10) {
            writeln("calc ", x, " = ", calc(x));
          }
        }
        foreach (x; 0 .. N + 1) {
          const res = calc(x);
          if (res != 0) {
            // a + b + c = (A + B + C) - x
            foreach (b; 0 .. min(A, C, (A + B + C) - x) + 1) {
              foreach (c; 0 .. min(A - b, B, (A + B + C) - x) + 1) {
                const a = (A + B + C) - x - b - c;
                if (0 <= a && c + a <= B && a + b <= C) {
                  long prod = res;
                  (prod *= two[a + b + c]) %= MO;
                  (prod *= fac[x]) %= MO;
                  (prod *= invFac[a]) %= MO;
                  (prod *= invFac[b]) %= MO;
                  (prod *= invFac[c]) %= MO;
                  (prod *= invFac[A - b - c]) %= MO;
                  (prod *= invFac[B - c - a]) %= MO;
                  (prod *= invFac[C - a - b]) %= MO;
                  (ans += prod) %= MO;
                }
              }
            }
          }
        }
      }
      writeln(ans);
    }
  } catch (EOFException e) {
  }
}
0